Skip to main content

Utah university demonstrates wireless electric bus

Utah State University (USU) in the US has developed what it claims is the first and only wirelessly charged electric bus designed and developed exclusively by a North American research organisation. Nicknamed the Aggie Bus, the new vehicle is also the first of its kind in the world to achieve key performance standards for a wirelessly charged vehicle.
November 19, 2012 Read time: 2 mins
Utah State University (USU) in the US has developed what it claims is the first and only wirelessly charged electric bus designed and developed exclusively by a North American research organisation.  Nicknamed the Aggie Bus, the new vehicle is also the first of its kind in the world to achieve key performance standards for a wirelessly charged vehicle.

The breakthrough prompted Robert T Bhunin, the Utah State University vice president of commercialisation and regional development, to state that the Aggie Bus is “a historic achievement and a great leap forward in the science and engineering related to electric vehicles.”

The new electric bus demonstrates that wireless charging is a viable option, at least for vehicles that make scheduled stops at pre-determined locations, such as bus stops.
The bus simply stops over a pad in the ground to recharge its batteries. Without wireless capabilities, the driver would have to get out of the bus to plug in manually.  USU also notes that, in terms of maintenance, the wireless system involves significant savings over plug-in systems, since it involves no moving parts and virtually no wear and tear. The system is also weatherproof and has no unsightly wires.

With a reliable network of frequent recharges, the bus can run all day without having to charge a full of load on-board batteries. USU says that makes it the equal of any standard diesel or compressed natural gas bus.

USU claims the electric is a robust prototype for a commercially viable vehicle.  Indeed, the 5583 Utah Transit Authority has committed to a partnership for launching a full scale demonstration of the new technology by the middle of 2013, consisting of a 40-foot transit bus on a public transit route through the campus of another state institution, the University of Utah in Salt Lake City.

For more information on companies in this article

Related Content

  • Developments in security for wireless communications networks
    July 20, 2012
    David Crawford looks at new developments in security for wireless communications networks. Wireless communications - including mobile phone links - are well recognised as a key transport technology. They are low-cost, easily installed, well supported by the wider IT industry and offer the protocols of choice for much metropolitan area networking on which transport applications can piggyback.
  • P3s offer new options for public transit agencies
    March 28, 2018
    David Crawford welcomes new US guidance on public-private partnerships in the public transit sector. Public-private partnerships (P3s) are becoming increasingly favoured as a means of cost-effectively delivering much-needed public transit projects across the US. Previously, researched examples have tended to be on the large-scale while information on the potential for smaller, more localised schemes has been comparatively sparse. In a bid to fill that gap, the ‘Public Transportation Guidebook for Small
  • Wavetronix radar-based traffic sensor cuts costs
    May 30, 2013
    While initial cost of radar based detection may be higher than that traditional loops, lower maintenance costs more than balance the books. Following successful field tests, the US city of Greenville, North Carolina, has recently agreed a new policy of phasing in Wavetronix traffic sensor technology’s radar-based SmartSensor Matrix system across its signalised traffic intersections. City traffic engineer Rik DiCesare expects the incremental implementation to deliver benefits to both the city’s taxpayers an
  • Traffic signal priority initiatives aid better bus travel
    March 15, 2012
    David Crawford investigates traffic signal priority initiatives developing for better bus travel on the US Pacific Coast Transit patronage rises by an average of 35% along commuter corridors equipped with bus rapid transit (BRT) systems, according to the US Department of Transportation’s Federal Transit Administration (FTA). BRT as defined as bus transit enhanced with ITS systems for better services, is winning new passengers attracted by opportunity to avoid increasing fuel costs and traffic congestion.