Skip to main content

US to field trial connected vehicle technology

The US Department of Transportation (DOT) has announced that the University of Michigan will conduct a road safety field trial in Ann Arbor, Michigan, which will include the installation of wireless devices in up to 3,000 vehicles in one location, to evaluate the effectiveness of connected vehicle technology to prevent crashes.
April 17, 2012 Read time: 2 mins
RSSThe 324 US Department of Transportation (DOT) has announced that the University of Michigan will conduct a road safety field trial in Ann Arbor, Michigan, which will include the installation of wireless devices in up to 3,000 vehicles in one location, to evaluate the effectiveness of connected vehicle technology to prevent crashes.

During the pilot, to be carried out on the streets and highways of Ann Arbor from August, 2012 to August, 2013, drivers will be alerted to impending dangers in real-time so they can take action to avoid crashes. Data will be collected from the vehicles in order to understand how different types of motorists respond to safety messages in the real world.

"This test will be an important step towards the US Department of Transportation's top priority – a safer transportation system," said Peter Appel, administrator of the 321 Research and Innovative Technology Administration. "Technology is an investment in the future and this pilot deployment of vehicles that 'see' and 'talk' with one another with the help of wireless communication will allow us to learn how drivers use electronic alerts to avoid crashes in a real-world environment."

The safety pilot is the second part of a two-part connected vehicle research initiative. The first part is the Safety Pilot Driver Acceptance Clinics, which began on this month. The driver clinics are the first step in identifying how motorists respond to innovative wireless devices for safety. Participants in the six driver acceptance clinics will test cars equipped with connected vehicle devices in a controlled environment where researchers can observe the drivers' responses to the technology.

To continue the data collection under real-world conditions, the Ann Arbor safety pilot will allow drivers using cars, trucks, and transit vehicles fitted with wireless devices to carry out their normal routines while their vehicles sense the presence of other equipped vehicles nearby.

Related Content

  • Smart parking technologies: solving drivers parking pain
    March 30, 2017
    Smarter parking can benefit city authorities and other road users as well as drivers looking for a space, argues Dr Graham Cookson. As witnessed by the recent announcements at the Consumer Electronics Show, the automotive industry continues to focus on the driving experience; moving from speed and handling towards safety and efficiency.
  • Tampa CV pilot ‘underestimated’ challenges
    October 20, 2020
    Connected vehicle applications may be falsely marketed as 'deployment-ready', review warns
  • Emerging transportation leaders meet at IBTTA 2016 Leadership Academy
    February 10, 2016
    To provide emerging transportation leaders with leadership training geared specifically to the toll road industry, the International Bridge, Tunnel and Turnpike Association (IBTTA) has convened its 2016 Leadership Academy, 1 to 12 February at the Washington Marriott Georgetown in Washington, DC. Selected through a competitive application process, the 36 global participants will participate in this intense, one-week course taught by internationally recognised toll industry leaders, business partners, mana
  • Econolite to host connected vehicle demonstration at opening of Mcity
    July 15, 2015
    As part of the grand opening of Michigan’s Mcity on 20 July, Econolite will host a connected vehicle demonstration of real-time vehicle-to-infrastructure communications, using currently available signalised intersection equipment. Mcity is a unique test site for connected and automated vehicles located on the North Campus Research Complex and operated by the University’s Mobility Transformation Center (MTC). The 32-acre simulated urban and suburban networked environment features a system of roads wit