Skip to main content

UK university projects shows wireless sensors could improve rail crossing safety

A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks. Following extensive research at the university’s Institute of Railway Research (IRR), the Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates. According to t
August 23, 2016 Read time: 2 mins
A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks.

Following extensive research at the university’s Institute of Railway Research (IRR), the 1837 Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates.

According to the researchers, the technology has been tried and tested in the oil and gas industry and some safety-critical applications such as medical devices.

The IRR’s professor in Railway Safety, Dr Coen Van Gulijk says current train detection devices are costly because they are made to be failsafe. They are also disruptive to install. “But we have shown that we can use many cheap sensors and still guarantee fail safety,” he said. “If one sensor fails, the others talk to one another and create another network, creating another route for the information to travel.”

The researchers believe that the sensors would be much less costly to install and maintain. They claim that in some locations a conventional detection system could cost up to £500,000, with high running costs. But a wireless sensor network in the same situation could be installed for less than £20,000 and would be self-powered by train vibrations.

Now that they have demonstrated the feasibility of using wireless sensors to control automatic level crossings, the researchers are to hold talks with industrial partners who can help bring the project to fruition.

For more information on companies in this article

Related Content

  • Russia 2018 World Cup: ITS can win it
    June 5, 2018
    Teams and supporters will cover vast distances in Russia for the 2018 FIFA World Cup. Stephane Clauss from Sony Europe’s Image Sensing Solutions division examines how the latest camera technologies can be deployed to help things run smoothly over the next month or so... For one month, from June 14, Russia is hosting the 2018 FIFA World Cup. This is the largest country in the world and the distances between venues will be larger than at almost any other World Cup - bar the finals in the US and Brazil.
  • Next Generation 911, updating the US 911 emergency system
    February 1, 2012
    Continuing developments in telecommunications and public expectation have left the US's legacy, analogue 911 emergency call system trailing. Linda D. Dodge, Public Safety Program Manager for the ITS programme in USDOT's Research and Innovative Technology Administration, the sponsor of the Next Generation 911 initiative, writes about efforts towards updating
  • Cost benefit goes under the microscope
    August 21, 2017
    Conventional cost benefit analysis (CBA) of plans for urban smart mobility initiatives needs serious rethinking, according to a recently-completed European study. The three-year Evidence Project (the Project) emerged in response to concerns about the availability and quality of documented research – including CBA – required to prove that investment in sustainable urban mobility plans (SUMPs) can be economically beneficial. Covering 22 sectors ranging from electric vehicles to shared spaces, the Project clai
  • Crossing the line: managing traffic across jurisdictions
    June 18, 2024
    The US will eventually have a fully-digitised transportation network, with traffic management devices talking to each other across massive distances. It’s really a question of pain points on the road to full deployment, explains Mark Talbot of Q-Free