Skip to main content

UK university projects shows wireless sensors could improve rail crossing safety

A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks. Following extensive research at the university’s Institute of Railway Research (IRR), the Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates. According to t
August 23, 2016 Read time: 2 mins
A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks.

Following extensive research at the university’s Institute of Railway Research (IRR), the 1837 Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates.

According to the researchers, the technology has been tried and tested in the oil and gas industry and some safety-critical applications such as medical devices.

The IRR’s professor in Railway Safety, Dr Coen Van Gulijk says current train detection devices are costly because they are made to be failsafe. They are also disruptive to install. “But we have shown that we can use many cheap sensors and still guarantee fail safety,” he said. “If one sensor fails, the others talk to one another and create another network, creating another route for the information to travel.”

The researchers believe that the sensors would be much less costly to install and maintain. They claim that in some locations a conventional detection system could cost up to £500,000, with high running costs. But a wireless sensor network in the same situation could be installed for less than £20,000 and would be self-powered by train vibrations.

Now that they have demonstrated the feasibility of using wireless sensors to control automatic level crossings, the researchers are to hold talks with industrial partners who can help bring the project to fruition.

For more information on companies in this article

Related Content

  • Peter Norton: ‘We can reintroduce freedom of choice in transportation’
    April 22, 2022
    Funding for transit, cycling and walkability can be politically divisive – so why not bypass politics by letting toll payers themselves choose how a fraction of their toll is spent, asks Peter Norton
  • Student’s graphene battery could cut EV charging times
    December 8, 2016
    Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries. Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy
  • Coded exchanges
    July 24, 2012
    For many, Ethernet- and IP-based networks are the cast-iron solution to ITS's communications needs. However, there remain issues from manufacturer to manufacturer with interpretation of what are supposed to be common standards The 'promise' of Ethernet was that different devices such as IP video cameras and traffic signals could be easily integrated into communications networks, simplifying the process of transporting data over copper, fibre or wirelessly. However, although Ethernet devices have come to pre
  • Delivering accurate vehicle identification
    August 1, 2012
    In the Netherlands, TNO, the independent research organisation, has been engaged in a project on behalf of the RDW, the Dutch vehicle registration and licensing authority, intended to look at the feasibility of using electronic means to make vehicle identification more accurate and less susceptible to fraud. Electronic Vehicle Identification (EVI) has been in existence in various forms for several years now but TNO was tasked with finding out whether OnBoard Unit (OBU)-based applications could be complement