Skip to main content

UK university projects shows wireless sensors could improve rail crossing safety

A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks. Following extensive research at the university’s Institute of Railway Research (IRR), the Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates. According to t
August 23, 2016 Read time: 2 mins
A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks.

Following extensive research at the university’s Institute of Railway Research (IRR), the 1837 Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates.

According to the researchers, the technology has been tried and tested in the oil and gas industry and some safety-critical applications such as medical devices.

The IRR’s professor in Railway Safety, Dr Coen Van Gulijk says current train detection devices are costly because they are made to be failsafe. They are also disruptive to install. “But we have shown that we can use many cheap sensors and still guarantee fail safety,” he said. “If one sensor fails, the others talk to one another and create another network, creating another route for the information to travel.”

The researchers believe that the sensors would be much less costly to install and maintain. They claim that in some locations a conventional detection system could cost up to £500,000, with high running costs. But a wireless sensor network in the same situation could be installed for less than £20,000 and would be self-powered by train vibrations.

Now that they have demonstrated the feasibility of using wireless sensors to control automatic level crossings, the researchers are to hold talks with industrial partners who can help bring the project to fruition.

For more information on companies in this article

Related Content

  • Future of US cooperative infrastructure networks
    July 31, 2012
    Peter H. Appel, the new Administrator of the USDOT's Research and Innovative Technology Administration, on his vision of the US's future cooperative infrastructure networks. Peter H. Appel comes to the post of Administrator of the US Department of Transportation's Research and Innovative Technology Administration (RITA) from a background in transportation-related work which stretches back over 20 years. Most recently with management consultancy A. T. Kearney, Inc., where he focused on busin
  • Wavetronix radar-based traffic sensor cuts costs
    May 30, 2013
    While initial cost of radar based detection may be higher than that traditional loops, lower maintenance costs more than balance the books. Following successful field tests, the US city of Greenville, North Carolina, has recently agreed a new policy of phasing in Wavetronix traffic sensor technology’s radar-based SmartSensor Matrix system across its signalised traffic intersections. City traffic engineer Rik DiCesare expects the incremental implementation to deliver benefits to both the city’s taxpayers an
  • University data experts team up with local company to improve road safety
    June 20, 2017
    Data analytics experts at Queen’s University Belfast have teamed up with local company See.Sense to create an intelligent bike light, which they say could help to improve road safety.
  • Crash course in workzone safety
    April 26, 2021
    A vehicle crashing through a workzone is an ever-present risk. As US National Work Zone Awareness Week approaches, Alan Dron asks what chance there is of improving the situation