Skip to main content

UK university projects shows wireless sensors could improve rail crossing safety

A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks. Following extensive research at the university’s Institute of Railway Research (IRR), the Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates. According to t
August 23, 2016 Read time: 2 mins
A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks.

Following extensive research at the university’s Institute of Railway Research (IRR), the 1837 Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates.

According to the researchers, the technology has been tried and tested in the oil and gas industry and some safety-critical applications such as medical devices.

The IRR’s professor in Railway Safety, Dr Coen Van Gulijk says current train detection devices are costly because they are made to be failsafe. They are also disruptive to install. “But we have shown that we can use many cheap sensors and still guarantee fail safety,” he said. “If one sensor fails, the others talk to one another and create another network, creating another route for the information to travel.”

The researchers believe that the sensors would be much less costly to install and maintain. They claim that in some locations a conventional detection system could cost up to £500,000, with high running costs. But a wireless sensor network in the same situation could be installed for less than £20,000 and would be self-powered by train vibrations.

Now that they have demonstrated the feasibility of using wireless sensors to control automatic level crossings, the researchers are to hold talks with industrial partners who can help bring the project to fruition.

For more information on companies in this article

Related Content

  • Weathering the elements: how weather affects the network
    July 29, 2013
    Weather-related problems can render cost-cutting counter productive, according to CommScope’s Philip Sorrells. When severe weather conditions make headlines every winter, motorists and travellers seem willing to accept the impact on the trains and roads and yet take for granted that the communications networks will continue uninterrupted. They often appear far more upset that the information system does not give them an update on road conditions, train services or bus arrival times than they are about the a
  • Mobinet counters weighty cross border concerns
    November 9, 2017
    A Mobinet pilot is combining onboard weighing with V2X comms to streamline vehicle weight enforcement. David Crawford reports. Pan-European, cross-border weigh-in-motion (WIM) for trucks is now a practical possibility, following successful Scandinavian trials within the EU-co-funded Mobinet (Internet of Mobility) programme. New technology is using strain sensors, located on load-bearing components and routinely installed in truck fleet management systems.
  • Huawei addresses congested, separated rail networks with cloud solution
    December 20, 2024
    A shift to a cloud-based operating regime solves the problems of trying to make cluttered, geographically-discrete terrestrial systems work together
  • Getting C/AVs from pipedream to reality
    October 17, 2019
    The UK government has suggested that driverless cars could be on the roads by 2021. But designers and engineers are grappling with a number of difficult issues, muses Chris Hayhurst of MathWorks Earlier this year, the UK government made the bold statement that by 2021, driverless cars will be on the UK’s roads. But is this an achievable reality? Driverless technology already has its use cases on our roads, with levels of autonomy ranked on a scale. At one end of the spectrum, level 1 is defined by th