Skip to main content

UK university projects shows wireless sensors could improve rail crossing safety

A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks. Following extensive research at the university’s Institute of Railway Research (IRR), the Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates. According to t
August 23, 2016 Read time: 2 mins
A study by rail experts at the University of Huddersfield in the UK has concluded that railway crossing safety could be improved by networks of tiny wireless sensors attached to the tracks.

Following extensive research at the university’s Institute of Railway Research (IRR), the 1837 Department for Transport-funded project established that the sensors could be powered by vibrations from approaching trains. They would then form a wireless network to send a message to lower or raise the gates.

According to the researchers, the technology has been tried and tested in the oil and gas industry and some safety-critical applications such as medical devices.

The IRR’s professor in Railway Safety, Dr Coen Van Gulijk says current train detection devices are costly because they are made to be failsafe. They are also disruptive to install. “But we have shown that we can use many cheap sensors and still guarantee fail safety,” he said. “If one sensor fails, the others talk to one another and create another network, creating another route for the information to travel.”

The researchers believe that the sensors would be much less costly to install and maintain. They claim that in some locations a conventional detection system could cost up to £500,000, with high running costs. But a wireless sensor network in the same situation could be installed for less than £20,000 and would be self-powered by train vibrations.

Now that they have demonstrated the feasibility of using wireless sensors to control automatic level crossings, the researchers are to hold talks with industrial partners who can help bring the project to fruition.

For more information on companies in this article

Related Content

  • Asecap: get ready to rethink everything you know
    November 15, 2022
    How can we make our infrastructure ready for new sustainability challenges? What kind of investments are needed? And who will finance them? Tolling association Asecap has some thoughts. Geoff Hadwick reports from Lisbon
  • Debating contactless toll charging by smartphone
    April 25, 2012
    Developments in the mass transit sector could provide indicators of potential for greater use of mobile consumer electronic devices for charging and tolling, according to Consult Hyperion’s Mike Burden. However, opinion among toll system suppliers is divided. Jason Barnes reports The combination of mass-market devices and their protocols, typified by smartphones featuring near field communication (NFC), points to some exciting cross-fertilisation possibilities in the charging and tolling sector, says Consul
  • Carrots are proving cost-effective in Netherlands
    October 3, 2018
    There are lessons to be learned from congestion avoidance schemes in the Netherlands. David Crawford welcomes some new thinking in road pricing. Highway operators worldwide are being urged to learn from Dutch experience in using financial carrots rather than sticks to encourage drivers to avoid contributing to congestion. A Netherlands/UK group makes a convincing cost/benefit case in a new global survey of road pricing technologies, economics and acceptability. Representing the Rijkswaterstaat section of
  • TM 2.0 boost TMC data feed and driver influence
    November 15, 2017
    TM 2.0 views connected vehicles and V2I as two-way communications channels, benefitting traffic management and drivers, as Alan Dron discovers. As connected vehicles are progressively rolled out there will come a point at which traffic managers and traffic management centres (TMCs) will have to gear up to cope with a rapidly-evolving road scenario. The TM 2.0 Platform (see box) is promoting a concept of new-generation traffic management (which carries the same TM 2.0 title) and is studying how future T