Skip to main content

Minnesota roads could go electric

Transportation infrastructure can evolve to support clean vehicle electrification, study finds
By Adam Hill April 26, 2022 Read time: 2 mins
HVDC transmission lines buried in the highway are a cost-effective option for electric and communications infrastructure (© Valeriya Luzina | Dreamstime.com)

High-voltage, direct current (HVDC) transmission lines buried in the highway are a cost-effective option for electric and communications infrastructure, according to a new report.

The Ray and NGI Consulting's NextGen Highways Feasibility Study for the Minnesota Department of Transportation (MnDoT) looks at co-locating lines in the highway right-of-way (ROW).

“Federal policy not only authorises building electrical transmission and fibre along our roads, but it also strongly encourages state DoTs to approach infrastructure planning with a wide lens, taking into account both immediate and future public needs that could be met by leveraging transportation ROW,” said Laura Rogers, deputy director of The Ray.

“To support clean vehicle electrification, our existing transportation infrastructure will need to evolve to incorporate the infrastructure to power and connect these vehicles."

This issue has come to prominence as authorities look at projects such as renewable energy generation, electrical transmission and distribution projects, broadband, vegetation management, inductive charging in travel lanes and alternative fuelling facilities.

In April 2021, Federal Highway Administration guidance said highway ROW “can be leveraged by state DoTs for pressing public needs relating to climate change, equitable communications access and energy reliability".

“The findings from this study demonstrate that buried HVDC transmission is cost-effective and can be feasibly sited in interstate and highway ROW after making appropriate consideration for existing and future transportation system needs,” said Morgan Putnam, founder of NGI.

“This means that our existing highway system can enable transportation and grid decarbonisation and strengthen grid reliability and resilience – all while delivering billions of dollars in societal benefits.”

The NextGen Highways team worked with an internal working group at MnDoT to examine policy, regulation and projects, analysed MnDoT-specific concerns, examined HVDC transmission line requirements, and looked at the cost-benefits ratio.

It found that good practice is already available: utilities and regulators in Wisconsin have successfully collaborated with the Wisconsin DoT to place more than 800 miles of electric transmission infrastructure within and along state and interstate highway ROW over the last 20 years.

The NextGen Highways team is planning to continue its work with MnDoT in 2022 and to launch a coalition of state DoTs, utilities and transmission developers to support the co-location of buried fibre and transmission in highway and interstate ROW. 

For more information on companies in this article

Related Content

  • New York begins East Bronx e-scooter pilot
    April 20, 2021
    Bird, Lime and Veo say they will engage with disability community on accessibility
  • Asecap Days 2024: Getting used to the new normal
    August 27, 2024
    Asecap Days 2024 in Milan focused on environmental protection of road infrastructure, digital twin-based maintenance and monitoring of highways as well as the impact of electric vehicles, reports David Arminas
  • Connected vehicles - potential to transform US transportation
    April 12, 2013
    There’s a new face in the driving seat at the US Department of Transport’s ITS Joint Program Office. Fortunately, as Robin Meczes finds out, he’s no learner driver… Ask Kenneth Leonard why he wanted his new job as director of the ITS Joint Program Office, and his answer comes back without a second’s delay. “The potential to save lives, reduce injuries and help people enjoy a more efficient transportation system is the kind of challenge that makes me want to come to work each morning,” he says. “In my opinio
  • Solar-powered traffic detection improves communication
    January 31, 2012
    Pete Goldin reports on a new wireless, solar-powered traffic detection system being used by Caltrans District 12. As more and more traffic data is necessary to satisfy the needs of traffic management centres and traveller information systems, and as traffic detection technology becomes more ubiquitous, transportation authorities are pressured to find more economical ways of expanding their detection systems. Caltrans District 12 is leading this push by deploying the latest detection system from Case Global