Skip to main content

Kyocera participates in self-driving bus test in Japan

Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan. The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications. Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture. High-sensitivity magnetic impedance
December 21, 2018 Read time: 2 mins

897 Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan.

The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications.

Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture.

High-sensitivity magnetic impedance (MI) sensors from magnetic markers placed on the BRT routes will identify the position of the bus. Tests will be carried out to assess the operation of the bus autonomous lane-maintenance and speed control systems. The vehicle will operate at speeds of 40kmh or lower while stopping at designated positions.

Precision docking tests will utilise magnetic markers which communicate spatial information to stop the bus automatically as it reaches the platform of the BRT station.

A third test will use radio communication between the bus and location-detection systems to verify the ability of a bus to negotiate passage on a BRT roadway wide enough for one vehicle, as another vehicle approaches from the opposite direction.  

Additionally, location-detection tests will use GPS to verify navigation and distance-measurement systems.

Aichi Steel will supply magnetic markers and Softbank is responsible for multi-global navigation satellite system terminals. Nippon Signal is providing the signal light and signal control equipment while NEC is handling the target track creation and control of the magnetic marker system.

NEC converts information about the road design map, such as curves, lines, and slopes, into electronic data to create the target path. “The information from the magnetic markers and RFID tags is then read by the bus so that it can identify its position,” the company says. “This system supports smooth driving along the target path.”

For more information on companies in this article

Related Content

  • How intelligent video security supports smart mobility
    April 1, 2021
    The ease of getting from point A to point B, the effective movement of goods and services, and the flexibility and integration of various modes of transportation are key aspects of mobility today. Jayden Xu, senior manager, ITS Solutions, at Hikvision, details the role of intelligent video security technology for improved traffic management
  • Japan locates Here SDK
    September 15, 2022
    Here Technologies says it will provide data to enhance businesses' mobile phone apps
  • Oxa joins Sunderland AV shuttle programme
    January 20, 2025
    UK city initiative aims to show how AVs can connect people to key destinations
  • nuTonomy to begin on-street testing of self-driving cars
    January 3, 2017
    Self-driving car software developer nuTonomy is to begin testing its fleet of self-driving cars on specific public streets in a designated area of Boston. The company has signed a Memorandum of Understanding with the City of Boston and the Massachusetts Department of Transportation that authorises testing of its self-driving Renault Zoe electric vehicle in the city. nuTonomy equips its vehicles with a software system which has been integrated with high-performance sensing and computing components to e