Skip to main content

Kyocera participates in self-driving bus test in Japan

Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan. The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications. Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture. High-sensitivity magnetic impedance
December 21, 2018 Read time: 2 mins

897 Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan.

The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications.

Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture.

High-sensitivity magnetic impedance (MI) sensors from magnetic markers placed on the BRT routes will identify the position of the bus. Tests will be carried out to assess the operation of the bus autonomous lane-maintenance and speed control systems. The vehicle will operate at speeds of 40kmh or lower while stopping at designated positions.

Precision docking tests will utilise magnetic markers which communicate spatial information to stop the bus automatically as it reaches the platform of the BRT station.

A third test will use radio communication between the bus and location-detection systems to verify the ability of a bus to negotiate passage on a BRT roadway wide enough for one vehicle, as another vehicle approaches from the opposite direction.  

Additionally, location-detection tests will use GPS to verify navigation and distance-measurement systems.

Aichi Steel will supply magnetic markers and Softbank is responsible for multi-global navigation satellite system terminals. Nippon Signal is providing the signal light and signal control equipment while NEC is handling the target track creation and control of the magnetic marker system.

NEC converts information about the road design map, such as curves, lines, and slopes, into electronic data to create the target path. “The information from the magnetic markers and RFID tags is then read by the bus so that it can identify its position,” the company says. “This system supports smooth driving along the target path.”

For more information on companies in this article

Related Content

  • ITS Japan discusses World Congress legacies
    September 8, 2014
    It is often overlooked that the end of an ITS World Congress can be a dynamic beginning and the legacy can be far-reaching. Hajime Amano, President and CEO of ITS Japan explains how each time the country has hosted an ITS World Congress it has brought about major new national initiatives
  • Self-driving bus operating at Chalmers University of Technology
    May 22, 2018
    Citizens of Gothenburg can travel on a self-driving bus between Chalmers University of Technology’s main entrance and its library until 1 June. The trial is intended to assess the technology and user behaviour to examine the potential of self-driving vehicles. The project is part of the Swedish government’s co-operation programme called Next Generation Travel and Transport which seeks to modernise current systems for transporting people and goods. The self-driving bus service is partly funded by government
  • Authorities switch on to all electric buses as costs tumble
    January 9, 2018
    Alan Dron looks at changes in bus propulsion as cities look to improve air quality and seek to reduce maintenance costs. Despite the ending of various incentives to adopt alternative fuels, the introduction of electric buses by US transit authorities is picking up speed as performance improves, costs drop and air quality considerations become increasingly significant. More US bus manufacturers are introducing zero-emission models and some recent contracts will see many more passengers getting their first
  • Real time passenger information with live transit updates
    October 10, 2012
    Canada’s Regional Municipality of York (YRT/Viva) has partnered with Google and INIT, supplier of ITS and fare collection systems, to offer bus passengers real-time trip plans through Google maps. The service, Google Live Transit Updates, tracks YRT buses using INIT’s GPS-based navigation system and provides passengers with the exact time a bus will depart from their stop. YRT/Viva is the first transit agency in Canada to offer real-time trip planning on Google with up-to-the-minute next bus departure infor