Skip to main content

Kyocera participates in self-driving bus test in Japan

Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan. The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications. Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture. High-sensitivity magnetic impedance
December 21, 2018 Read time: 2 mins

897 Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan.

The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications.

Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture.

High-sensitivity magnetic impedance (MI) sensors from magnetic markers placed on the BRT routes will identify the position of the bus. Tests will be carried out to assess the operation of the bus autonomous lane-maintenance and speed control systems. The vehicle will operate at speeds of 40kmh or lower while stopping at designated positions.

Precision docking tests will utilise magnetic markers which communicate spatial information to stop the bus automatically as it reaches the platform of the BRT station.

A third test will use radio communication between the bus and location-detection systems to verify the ability of a bus to negotiate passage on a BRT roadway wide enough for one vehicle, as another vehicle approaches from the opposite direction.  

Additionally, location-detection tests will use GPS to verify navigation and distance-measurement systems.

Aichi Steel will supply magnetic markers and Softbank is responsible for multi-global navigation satellite system terminals. Nippon Signal is providing the signal light and signal control equipment while NEC is handling the target track creation and control of the magnetic marker system.

NEC converts information about the road design map, such as curves, lines, and slopes, into electronic data to create the target path. “The information from the magnetic markers and RFID tags is then read by the bus so that it can identify its position,” the company says. “This system supports smooth driving along the target path.”

For more information on companies in this article

Related Content

  • Automating seat belt compliance a priority for road safety
    February 2, 2012
    Finland's VTT is developing a mobile, automated seatbelt compliance system. Here, the organisation's Matti Kutila discusses progress
  • 5G or not 5G?
    April 16, 2019
    Just a few years ago, there was only one solution in terms of communications protocols for delivering vehicle connectivity. Now, road operators and vehicle manufacturers face choices – including a moral choice, perhaps. Jason Barnes looks at the current state of play There is a debate raging in the ITS world over future communications protocols. Asfinag, Austria’s national strategic road operator, has announced it will from 2020 be using ITS-G5 to support cooperative ITS (C-ITS) applications (‘First thin
  • Additional accuracy enhances ITS options
    March 19, 2015
    High accuracy and reliability of GNSS location data is available using the EGNOS services to be ready for Galileo’s expanding satellite constellation. Global navigation satellite systems (GNSS) are increasingly a building block for ITS applications from road user charging and E-call to tracking & tracing of freight. Even while the European Space Agency is still assembling the Galileo constellation, EGNOS (the European Geostationary Navigation Overlay Service) is already providing the basis of a range of ser
  • Helping to keep the power on in Tennessee
    November 12, 2014
    Middle Tennessee Electric Membership Corporation (MTE), the largest electric cooperative organisation in Tennessee is using Nedap Identification Systems’ Transit Standard long-range RFID readers on its Murfreesboro site entry and exit lanes to offer fast, convenient and secure vehicle access control to their facility. Transit Standard readers were installed at the entry and exit lanes of the facility, taking advantage of the system’s directional read characteristics that eliminate crossover reads and let