Skip to main content

Kyocera participates in self-driving bus test in Japan

Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan. The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications. Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture. High-sensitivity magnetic impedance
December 21, 2018 Read time: 2 mins

897 Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan.

The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications.

Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture.

High-sensitivity magnetic impedance (MI) sensors from magnetic markers placed on the BRT routes will identify the position of the bus. Tests will be carried out to assess the operation of the bus autonomous lane-maintenance and speed control systems. The vehicle will operate at speeds of 40kmh or lower while stopping at designated positions.

Precision docking tests will utilise magnetic markers which communicate spatial information to stop the bus automatically as it reaches the platform of the BRT station.

A third test will use radio communication between the bus and location-detection systems to verify the ability of a bus to negotiate passage on a BRT roadway wide enough for one vehicle, as another vehicle approaches from the opposite direction.  

Additionally, location-detection tests will use GPS to verify navigation and distance-measurement systems.

Aichi Steel will supply magnetic markers and Softbank is responsible for multi-global navigation satellite system terminals. Nippon Signal is providing the signal light and signal control equipment while NEC is handling the target track creation and control of the magnetic marker system.

NEC converts information about the road design map, such as curves, lines, and slopes, into electronic data to create the target path. “The information from the magnetic markers and RFID tags is then read by the bus so that it can identify its position,” the company says. “This system supports smooth driving along the target path.”

For more information on companies in this article

Related Content

  • San Francisco plans express lane network across Bay Area
    February 25, 2015
    Colin Sowman looks at plans to convert 240km (150 miles) of HOV/car pool lanes. While some authorities have debated the conversion of high occupancy vehicle lanes (HOV) into express or managed lanes allowing toll paying single-occupant vehicles to avoid congestion, San Francisco’s Bay Area Metropolitan Transportation Commission (MTC) has acted. It is converting 240km (150 miles) of HOV/car pool lanes to express lanes and last fall the MTC’s Bay Area Infrastructure Financing Authority selected TransCore to d
  • US eyes European model for Illinois toll road upgrade
    May 30, 2014
    David Crawford welcomes the adoption of European-style ITS technology by the US. The Jane Addams Memorial Tollway in Illinois, US is well on the way towards becoming a ‘smart traffic corridor’, taking full advantage of active traffic management (ATM or ‘managed lanes’) technology that originated in Europe. It is one of the first American toll roads to do so; preliminary work began in 2014 and will continue through to 2016. Jane Addams is one of four toll roads operated by the publicly-owned Illinois State T
  • u-blox GPS satellite receiver module aids unmanned microdrone flight
    July 2, 2013
    Equipped with an on board u-blox GPS satellite receiver module, a microdrone from German light-weight vertical take off and landing vehicles (VTOLs) manufacturer, microdrones, has successfully completed a high-precision aerial journey over the Alps from Switzerland towards Italy. Precise GPS coordinates and elevation were crucial for navigating obstacles and completing the flight in punishing weather conditions. Carrying a high-resolution video camera, the autonomous microdrone completed 18 pre-programmed
  • ITS initiatives provide travel information for disabled passengers
    December 4, 2012
    David Crawford investigates initiatives and issues in travel information for disabled passengers. World Health Organisation estimates suggest that 10% of the global population live with a disability. This can impact directly on their mobility, with implications for their independence; keeping active; and travelling to work, education and social activities; as well as the accessibility of information necessary to aid mobility. The EU-supported ‘CARDIAC’ project (Coordination Action in R&D in Accessible & Ass