Skip to main content

Kyocera participates in self-driving bus test in Japan

Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan. The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications. Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture. High-sensitivity magnetic impedance
December 21, 2018 Read time: 2 mins

897 Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan.

The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications.

Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture.

High-sensitivity magnetic impedance (MI) sensors from magnetic markers placed on the BRT routes will identify the position of the bus. Tests will be carried out to assess the operation of the bus autonomous lane-maintenance and speed control systems. The vehicle will operate at speeds of 40kmh or lower while stopping at designated positions.

Precision docking tests will utilise magnetic markers which communicate spatial information to stop the bus automatically as it reaches the platform of the BRT station.

A third test will use radio communication between the bus and location-detection systems to verify the ability of a bus to negotiate passage on a BRT roadway wide enough for one vehicle, as another vehicle approaches from the opposite direction.  

Additionally, location-detection tests will use GPS to verify navigation and distance-measurement systems.

Aichi Steel will supply magnetic markers and Softbank is responsible for multi-global navigation satellite system terminals. Nippon Signal is providing the signal light and signal control equipment while NEC is handling the target track creation and control of the magnetic marker system.

NEC converts information about the road design map, such as curves, lines, and slopes, into electronic data to create the target path. “The information from the magnetic markers and RFID tags is then read by the bus so that it can identify its position,” the company says. “This system supports smooth driving along the target path.”

Related Content

  • July 30, 2013
    Geotoll’s payment app could be the smart answer to tolling interoperability
    Jon Masters looks at a smartphone app which could be the ‘disruptive technology’ that eases the way to interoperability in tolling systems. Consumer demand may soon drive the biggest step change yet in tolling. In the United States a new start-up company, Geotoll, has launched a smartphone app for electronic toll payment. It is not beyond possibility that rapid growth of the market for smartphones will continue – an estimated 50% of US citizens and 80% of Europeans now have one – and that the Geotoll brand
  • August 8, 2018
    Knowing when to slow down
    Level 2 driver assistance vehicles have little problem reading fixed metal signs at the roadside - but it’s a different story with VMS in tunnels, finds Alan Dron. Following a series of hands-free driving tests in tunnels, an Australian road authority believes that car manufacturers have to up their game before vehicles have the required levels of competence to consistently perform ‘assisted driving’ tasks. The trials, in the state of Victoria late last year, tested the ability of several vehicles to stay
  • November 20, 2013
    Bluetooth and Wi-Fi offer new options for travel time measurements
    New trials show Bluetooth and Wi-Fi signals can be reliably used for measuring travel times and at a lower cost than an ANPR system, but which is the better proposition depends on many factors. Measuring travel times has traditionally relied automatic number plate (or licence plate) recognition (ANPR/ALPR) cameras capturing the progress of vehicles travelling along a pre-defined route. Such systems also have the benefit of being able to count passing traffic and have become a vital tool in dealing with c
  • September 9, 2016
    Michigan moves to test self-driving cars without driver
    Michigan would no longer require a driver to be inside a self-driving car while testing it on public roads, according to Associated Press. The legislation was passed unanimously this week by the state Senate, where backers touted the measures as necessary to keep the US auto industry's home state ahead of the curve on rapidly advancing technology.