Skip to main content

Historic milestone for EVs claimed

Utah State University Research Foundation's Energy Dynamics Laboratory has announced that it has operated the first high-power, high-efficiency wireless power transfer system capable of transferring enough energy to quickly charge an electric vehicle. The lightweight, low-profile system demonstrated 90 per cent electrical transfer efficiency of five kilowatts over an air gap of 10 inches. The demonstration at EDL's North Logan, Utah, facility further validates that electric vehicles can efficiently be charg
April 17, 2012 Read time: 3 mins
4936 Utah State University Research Foundation's Energy Dynamics Laboratory has announced that it has operated the first high-power, high-efficiency wireless power transfer system capable of transferring enough energy to quickly charge an electric vehicle. The lightweight, low-profile system demonstrated 90 per cent electrical transfer efficiency of five kilowatts over an air gap of 10 inches. The demonstration at EDL's North Logan, Utah, facility further validates that electric vehicles can efficiently be charged with wireless technology.

"This demonstration is an extraordinary and historic step in providing technologies to electric vehicle owners who will be able to pull their cars into garages at home and charge without having to plug in with cords," said Jeff Muhs, director of the Energy Dynamics Laboratory. "Our scientists and engineers have proven that enough power can be transferred over large distances to safely and efficiently charge electric car batteries from a pad under the ground to a receiver attached to the undercarriage of a vehicle – and this is just the beginning."

Based on the same theory that currently enables consumers to wirelessly charge toothbrushes and cell phones, EDL says it has expanded the technology to levels and efficiencies that are unprecedented. The laboratory also says that it has demonstrated that the wireless power transfer system it has developed is tolerant of lateral misalignment in any direction within approximately six inches. The power level and efficiency specifications are firsts in the United States for a system of this kind and the combined performance is claimed to be unique in the world.

"In the not-so-distant future, we will see vehicles go from being charged by plugging into the electric grid, to wirelessly charging in garages, shopping centres and dedicated refueling stations, to mass transit vehicles that are charged as they are in motion and eventually wireless electric roadways where cars will travel at 75 miles per hour while being charged," stated Muhs. "Future versions of the system architecture developed at EDL have the unique potential to be embedded under pavement and transfer power wirelessly to vehicles at speeds of 75 mph or more and provide enough power to completely eliminate the range anxiety of electric vehicles. Wireless power transfer represents the disruptive technology that will eventually enable the safe and efficient electrification of highways, end our dependence on foreign oil, and enable a new era of enhanced mobility."

Related Content

  • December 3, 2018
    EVs & smart cities: Tritium keeps things moving
    Electric vehicles are widely expected to play a major role in the smarter, cleaner cities of the future. Paul Sernia explains why – and looks at the place of ultra-rapid chargers as part of a versatile public infrastructure Electric vehicles (EVs) are widely expected to play a major role in the smarter, cleaner cities of the future. With no dirty tailpipe, EVs can help improve the polluted air of inner cities. And when deployed as widely shared assets – through car clubs, ride-sharing services and taxi
  • February 17, 2022
    Electreon wins MDoT EV charge road deal 
    Michigan wants EVs to be charged while in motion and stationary on one-mile stretch
  • August 22, 2013
    At-home charging for new Fiat 500e
    Fiat has selected AeroVironment as its preferred provider of home charging stations and installations for its all-electric Fiat 500e. The 2013 Fiat 500e features a 24-kWh Lithium-ion battery that will allow drivers to travel an estimated 108 miles and uses an industry-standard SAE J1772 recharge connector. The 240-volt refuelling station will charge the car in four hours or less versus the approximate twenty hours required using a standard 120-volt charging cable. AeroVironment’s UL-listed station can
  • June 22, 2021
    Hydrogen: transportation's silver bullet?
    As the quest for carbon-neutrality becomes a key political and economic driver, everyone is on the lookout for new sources of energy - so perhaps hydrogen’s time has come