Skip to main content

Four firms selected to provide equipment for Connected Vehicle Safety Pilot Program

Kapsch, ITRI International, Cohda Wireless and Cisco Systems, and Savari Networks have been selected by the Intelligent Transportation Systems Joint Programme Office (ITS JPO) to provide roadside equipment as part of the Connected Vehicle Safety Pilot Programme. The contracts were awarded by the Federal Highway Administration (FHWA) which solicited quotations from suppliers to provide all the necessary equipment, materials, and services for the development and production of the devices. Each of the device
April 23, 2012 Read time: 2 mins
RSS81 Kapsch, ITRI International, Cohda Wireless and 1028 Cisco Systems, and Savari Networks have been selected by the Intelligent Transportation Systems Joint Programme Office (781 ITS JPO) to provide roadside equipment as part of the Connected Vehicle Safety Pilot Programme. The contracts were awarded by the 831 Federal Highway Administration (FHWA) which solicited quotations from suppliers to provide all the necessary equipment, materials, and services for the development and production of the devices. Each of the devices selected by FHWA will be used to send messages such as signal phase and timing, curve speeds etc to vehicles using Dedicated Short Range Communications (DSRC).

The roadside devices are part of the US DOT’s Connected Vehicle Safety Pilot Program, a major research initiative that will test how ordinary drivers in real world driving conditions will respond to wireless safety messages. The drivers will be using vehicles that communicate with each other and will communicate with surrounding infrastructure such as traffic signals and work zones.

The Connected Vehicle Safety Pilot program will start in August 2011 and run though the first half of 2013.  There are two components to the programme, Safety Pilot Driver Acceptance Clinics and Safety Pilot Model Deployment. Devices that were awarded contracts will be put on a qualified products list and only those devices can be used in the model deployment. There will be no roadside equipment in the Driver acceptance clinics.

For more information on companies in this article

Related Content

  • Modernising India's bus travel
    August 29, 2012
    Award-winning ITS initiatives are promising modernisation of bus travel as a key part of development plans for cities of the Indian state of Karnataka. The Indian state of Karnataka is poised to launch the next stage of a major rollout of ITS technology on its bus network following the August 2012 go-live of an award-winning passenger information system. The Karnataka State Road Transport Corporation (KSRTC), which is owned by the state government
  • No in-road equipment for Queensland's free flow toll bridge
    February 1, 2012
    By May this year, the new Gateway Bridge in Brisbane, which is being built alongside an existing bridge, will be open. With it will come an end-to-end free-flow tolling system. Interview with Sue Caelers, Queensland Motorway Ltd. Queensland Motorways Ltd owns and operates 61km of roadway in the area around Brisbane, Australia. This includes the Gateway Bridge and the Gateway Extension, Logan and Port of Brisbane motorways.
  • Siemens to provide V2I technology for Florida pilot connected vehicle pilot project
    March 24, 2016
    Siemens, as a member of the Tampa-Hillsborough Expressway Authority (THEA) team, has been chosen by the US Department of Transportation (USDOT) to provide vehicle-to-infrastructure (V2I) technology for a new connected vehicle pilot project. Siemens V2I technology will enable vehicles and pedestrians to communicate with traffic infrastructure like intersections and traffic lights in real-time to reduce congestion specifically during peak rush hour in downtown Tampa. The technology will also help improve s
  • Communications hold key to expanding ITS wireless network expansion
    December 21, 2017
    Wireless transmission of data and control information is making smarter traffic management easier and cheaper to install. It has long been known that connectivity is the key to improving traffic management and many cost-benefit studies prove that investment in new technology can be justified in terms of reduced congestion, shorter travel times, improved safety and air quality. However, many authorities’ cap-ex budgets only cover urgent matters, not improvements, making it difficult, if not impossible to