Skip to main content

Four firms selected to provide equipment for Connected Vehicle Safety Pilot Program

Kapsch, ITRI International, Cohda Wireless and Cisco Systems, and Savari Networks have been selected by the Intelligent Transportation Systems Joint Programme Office (ITS JPO) to provide roadside equipment as part of the Connected Vehicle Safety Pilot Programme. The contracts were awarded by the Federal Highway Administration (FHWA) which solicited quotations from suppliers to provide all the necessary equipment, materials, and services for the development and production of the devices. Each of the device
April 23, 2012 Read time: 2 mins
RSS81 Kapsch, ITRI International, Cohda Wireless and 1028 Cisco Systems, and Savari Networks have been selected by the Intelligent Transportation Systems Joint Programme Office (781 ITS JPO) to provide roadside equipment as part of the Connected Vehicle Safety Pilot Programme. The contracts were awarded by the 831 Federal Highway Administration (FHWA) which solicited quotations from suppliers to provide all the necessary equipment, materials, and services for the development and production of the devices. Each of the devices selected by FHWA will be used to send messages such as signal phase and timing, curve speeds etc to vehicles using Dedicated Short Range Communications (DSRC).

The roadside devices are part of the US DOT’s Connected Vehicle Safety Pilot Program, a major research initiative that will test how ordinary drivers in real world driving conditions will respond to wireless safety messages. The drivers will be using vehicles that communicate with each other and will communicate with surrounding infrastructure such as traffic signals and work zones.

The Connected Vehicle Safety Pilot program will start in August 2011 and run though the first half of 2013.  There are two components to the programme, Safety Pilot Driver Acceptance Clinics and Safety Pilot Model Deployment. Devices that were awarded contracts will be put on a qualified products list and only those devices can be used in the model deployment. There will be no roadside equipment in the Driver acceptance clinics.

For more information on companies in this article

Related Content

  • Vaisala: Weather data is vital for connected vehicles
    August 26, 2016
    Vaisala’s Dr Kevin Petty explains why the weather will continue to play a big part in road safety and traffic management in the smart cities of the future. The world is becoming increasingly connected. Thanks to advances in information and communications technology, the cities we live in are becoming ‘smart’, with everything from education to law enforcement managed by integrated tech solutions in a bid to improve quality of life.
  • Wireless technology aids city-wide traffic management
    October 10, 2012
    An extensive hybrid communications network in the County of Los Angeles is proving the capability and benefits of modern wireless technology for traffic management across wide areas. Wireless communications technology has found a welcoming test bed for use in traffic management systems, in the County of Los Angeles. The county has long running programmes synchronizing and monitoring traffic signals over large areas. In the process, combined with installation of advanced traffic management systems (ATMS), th
  • FCC seeking comments on opening up 5 GHz band
    April 15, 2013
    The Federal Communications Commission (FCC) is seeking comments on a proposed rule that would make the 5.85-5.925 GHz band of spectrum available for expanded wi-fi services. The band is currently dedicated to uses associated with connected vehicle programs. FCC officials announced earlier this year that the commission is seeking to open up the 5 GHz band in order to alleviate wi-fi congestion at major hubs, such as airports and convention centres. However, there are concerns that the technology to prevent
  • Honda experiments with pedestrian and motorcycle safety
    August 29, 2013
    Honda has demonstrated its experimental vehicle-to-pedestrian (V2P) and vehicle-to-motorcycle (V2M) technologies, aimed at reducing the potential for collisions between automobiles and pedestrians and between automobiles and motorcycles. The vehicle-to-pedestrian (V2P) technology uses a car equipped with dedicated short range communications (DSRC) technology to detect a pedestrian with a DSRC-enabled Smartphone and provides auditory and visual warnings to both the pedestrian and drivers. According to Ho