Skip to main content

Cellular coverage on trains to get boost

According to Ingo Flomer, director of Product Management of UK company Axell Wireless, UK transport secretary Patrick McLoughlin’s intention to upgrade the rail network to enable passengers to access high-speed mobile broadband does not go far enough to promote an integrated communications infrastructure that supports cellular (3G and 4G) coverage on-board trains. Flomer says the UK has significant technological hurdles to overcome to connect rail passengers to the cellular network. The coverage would ha
October 2, 2013 Read time: 2 mins
According to Ingo Flomer, director of Product Management of UK company 7510 Axell Wireless, UK transport secretary Patrick McLoughlin’s intention to upgrade the rail network to enable passengers to access high-speed mobile broadband does not go far enough to promote an integrated communications infrastructure that supports cellular (3G and 4G) coverage on-board trains.

Flomer says the UK has significant technological hurdles to overcome to connect rail passengers to the cellular network. The coverage would have to extend throughout the entire 14,480 kilometres of UK passenger and freight network, along with the notorious black spots found in cuttings and tunnels. UK rail operators, along with 5021 Network Rail, can overcome the particular logistical problems of installing cellular networks across such an extensive area.

There are also significant technical issues posed by modern train rolling stock. Radio frequency (RF) signals generally glance off the outside of multi-layered, metallic carriages, which results in a reduced level of RF signal propagation inside carriages and therefore, poor quality mobile coverage.

A distributed antenna system (DAS) enhances mobile phone reception in enclosed spaces such as train carriages or tunnels/metros, taking the signal either from a mobile operator’s base station or from an off-air repeater and amplifies it in hard to reach places such as tunnels.

For train operators, providing their passengers with a good cellular coverage on-board trains acts as a differentiator in a very competitive marketplace. They systems they choose to deploy should prepare them for coping with future technologies such as 4G, without having to replace equipment later down the line.

For more information on companies in this article

Related Content

  • Ultra-thin antenna
    February 2, 2012
    Pulse Electronics Corporation has launched its new, ultra-thin, active GPS antenna with global 3G functionality including GPRS, GSM, UMTS and WCDMA.
  • ITS industry needs more effort to get to the future
    January 19, 2012
    Eric Sampson, visiting professor at Newcastle University and City University London and ambassador for ITS-UK, provides a retrospective on the last couple of decades and takes a look at what the ITS industry still needs to do to get to where it needs to be
  • UK project demonstrates vehicle remote operation and autonomy for disabled drivers
    January 4, 2017
    The UK’s first demonstration of a remotely-operated autonomous vehicle service for people with reduced mobility has been successfully completed as part of the GATEway project (Greenwich Automated Transport Environment), led by TRL. Taking place at the InterContinental Hotel in the Royal Borough of Greenwich and completed using an autonomous-enabled Toyota Prius, the demonstration marked the end of a fortnight of testing in which GATEway partners Gobotix and O2 were able to successfully demonstrate remote
  • EU project to make urban freight management more sustainable
    February 1, 2012
    Urban freight policies are becoming more common in European cities and regions. However, it is still difficult to evaluate and transfer the knowledge gained from the different city logistics measures implemented by local authorities. The SUGAR project aims to tackle this by establishing a systematic approach towards best practices identification and assessment, and by developing urban freight plans and actions.