Skip to main content

Cellular coverage on trains to get boost

According to Ingo Flomer, director of Product Management of UK company Axell Wireless, UK transport secretary Patrick McLoughlin’s intention to upgrade the rail network to enable passengers to access high-speed mobile broadband does not go far enough to promote an integrated communications infrastructure that supports cellular (3G and 4G) coverage on-board trains. Flomer says the UK has significant technological hurdles to overcome to connect rail passengers to the cellular network. The coverage would ha
October 2, 2013 Read time: 2 mins
According to Ingo Flomer, director of Product Management of UK company 7510 Axell Wireless, UK transport secretary Patrick McLoughlin’s intention to upgrade the rail network to enable passengers to access high-speed mobile broadband does not go far enough to promote an integrated communications infrastructure that supports cellular (3G and 4G) coverage on-board trains.

Flomer says the UK has significant technological hurdles to overcome to connect rail passengers to the cellular network. The coverage would have to extend throughout the entire 14,480 kilometres of UK passenger and freight network, along with the notorious black spots found in cuttings and tunnels. UK rail operators, along with 5021 Network Rail, can overcome the particular logistical problems of installing cellular networks across such an extensive area.

There are also significant technical issues posed by modern train rolling stock. Radio frequency (RF) signals generally glance off the outside of multi-layered, metallic carriages, which results in a reduced level of RF signal propagation inside carriages and therefore, poor quality mobile coverage.

A distributed antenna system (DAS) enhances mobile phone reception in enclosed spaces such as train carriages or tunnels/metros, taking the signal either from a mobile operator’s base station or from an off-air repeater and amplifies it in hard to reach places such as tunnels.

For train operators, providing their passengers with a good cellular coverage on-board trains acts as a differentiator in a very competitive marketplace. They systems they choose to deploy should prepare them for coping with future technologies such as 4G, without having to replace equipment later down the line.

For more information on companies in this article

Related Content

  • B&C Transit modernises Miami-Dade Metrorail’s control systems
    June 1, 2016
    Jason Gomez and Daniel Mondesir describe how passenger disruption was minimised during a major upgrading of the control room of Miami-Dade’s Metrorail. In 1984 when the Miami-Dade Department of Transportation and Public Works’ (DTPW) Metrorail system was launched in southern Florida, trains ran 18km along a single line and stopped at 10 stations.
  • RuggedCom introduces wireless broadband solution for mass transit
    April 23, 2013
    RuggedCom, a Siemens company, is adding new features to its RuggedMAX portfolio enabling mass transit companies to extend persistent broadband connections to fleets of vehicles, buses or trains.
  • System predicts train delays and informs response
    February 25, 2016
    David Crawford looks into the near-term future for Stockholm’s rail commuters. Swedish rail operator Stockholmståg, which runs commuter services in and around the country’s capital, is claiming a world first with the introduction of its automated Pendelprognosen (commuter prognosis) service. Developed to enable the prediction of delays as much as two hours before they are likely to occur, this offers the operator the scope for much earlier remedial action than previously - for example by filling in the expe
  • ITS solutions to keep truck traffic moving
    June 8, 2015
    David Crawford reviews freight management initiatives. Managing truck traffic to minimise its environmental impacts, without adversely impacting on its critical economic role, continues to drive ITS-based solutions in both urban and interurban contexts.