Skip to main content

Audi C-V2X to improve Georgia school safety

OEM works with Applied Information in city of Alpharetta to urge drivers to slow down
By Ben Spencer November 6, 2020 Read time: 2 mins
Audi’s C-V2X application is expected to warn drivers when they are approaching a school bus (© Audi of America)

Audi of America is working with Applied Information and tech firm Temple to develop connected vehicle applications to improve safety for school children in the city of Alpharetta, Georgia.

Pom Malhotra, director, connected services at Audi, says: “Using next-generation cellular technology, we have an opportunity to help save lives of some of the most vulnerable road users — school children.”

Audi says the first application, using Cellular Vehicle to Everything (C-V2X) technology, is designed to warn drivers when they are approaching an active school safety zone and if they are exceeding the speed limit when children are present. 

Roadside units (RSUs) installed in flashing signs called school zone safety beacons will broadcast messages to vehicles indicating location of the school and reduced speed limit.

This deployment will help alert drivers to changes in the speed limit as school times change due to half school days and early dismissals for weather, the company adds. 

A second application is expected to warn drivers when they are approaching a school bus stopped to pick up and drop off students. 

On-board units (OBUs) will broadcast C-V2X safety messages from school buses to C-V2X-equipped vehicles when the bus stop arm is extended to indicate no passing is allowed.

Modified Audi e-tron test vehicles will implement the C-V2X capabilities. 

The technologies are similar to those announced last month in a collaboration with the Virginia Department of Transportation to help protect roadside construction workers. 

Temple is to deploy the school bus OBU and school beacon RSUs which are being supplied by Applied. 

The applications will be developed at the city's Infrastructure Automotive Technology Laboratory.

The laboratory was established to encourage automakers to test connected vehicle technology in a “streetscape” setting featuring real-world interferences and obstructions. 

Audi regards Alpharetta as a prime location test Vehicle to Infrastructure (V2I) technologies because it has 125 connected traffic signals. 

According to the automaker, 55 of those signals are capable of direct C-V2X communication between a vehicle and a signal using short-distance cellular communication.

The signals help optimise green light timing and traffic flow as well as traffic light information equipped in many Audi vehicles, it adds.
 

For more information on companies in this article

Related Content

  • International Road Safety Awards: the winners
    March 4, 2019
    Road accidents are a major blight on the world’s highways - but some companies are attempting to stem the tide. David Arminas reports on the annual Prince Michael International Road Safety Awards
  • Nema's updated signage standards are key to managing the variables
    June 7, 2024
    National Electrical Manufacturers Association’s revision of standards relating to variable message signs will help to improve interoperability and reflect changes in vehicle technology
  • ITS America publishes connected vehicle guidance
    April 22, 2015
    Guidance on the likely impact of multipath communications on connected vehicle development has been published by ITS America. ITS America’s Connected Vehicle Technical Insight looks at the challenges and opportunities wireless interoperability could provide in vehicle applications. In particular the 22-page document examines the processes by which data can be transferred from one vehicle to another (V2V), or between a vehicle and the infrastructure (V2I).
  • Toyota proving ground tests co-operative ITS
    February 25, 2013
    Opened in November 2012, Toyota’s intelligent transportation systems (ITS) proving ground is being used to run a number of interactive tests between specially-equipped Toyota vehicles. Located at the company's Higashi-Fuji Technical Centre in Susono City, Japan, the ITS proving ground is a 3.5-hectare site that faithfully replicates a real urban environment, complete with intersecting streets, pedestrian crosswalks, and traffic signals. It is equipped with optical beacons, government-allocated 760 MHz trans