Skip to main content

ABI Research: DSRC above Cellular cheaper than implementing C-V2X

Implementing a Dedicated Short-Range Communication (DSRC) above cellular communications is expected to be $13.50 (£9.70) to $15 (£10) lower per Telematics Control Unit than implementing a Cellular Vehicle-to-Everything (C-V2X) solution, according to US-based ABI Research’s analysis of vehicle to everything (V2X). It follows industry discussions which have compared DSRC and C-V2X as technology alternatives for enabling V2X in vehicles to help prevent accidents.
February 7, 2018 Read time: 2 mins
Implementing a Dedicated Short-Range Communication (DSRC) above cellular communications is expected to be $13.50 (£9.70) to $15 (£10) lower per 6224 Telematics Control Unit than implementing a Cellular Vehicle-to-Everything (C-V2X) solution, according to US-based 5725 ABI Research’s analysis of vehicle to everything (V2X). It follows industry discussions which have compared DSRC and C-V2X as technology alternatives for enabling V2X in vehicles to help prevent accidents.


The study suggested that C-V2X’s complexity and requirements add cost over DSRC when considering that V2X is safety-critical technology. It showed that the key architectural differences are LTE ruggedization and automotive qualification, the need for high accuracy clock source, the cellular royalty scheme and the use of Wi-Fi which is included with DSRC for free.

James Hodgson, senior analyst for smart mobility & automotive research at ABI Research, said: "We estimate that in the initial years of deployment, C-V2X plus LTE will carry a system cost between US$13.50 [£9.70]and US$15 [£10] higher than DSRC plus LTE. DSRC, being the longer established and incumbent technology has cost advantages typically associated with deployments in the field and a more competitive ecosystem.”

For more information on companies in this article

Related Content

  • Legislation will drive market for telematics systems in Europe, Russia
    December 5, 2012
    According to a new report from Frost and Sullivan, the European automotive navigation market will witness a shift towards integration and a continual trend towards low-cost connected navigation, which will become a commodity. With Smartphone replication technologies, Smartphone-based navigation inside cars will dominate the market, serving all car segments. The eCall in Europe and ERA-GLONASS in Russia, which mandate automated emergency response systems in vehicles, will lead to Europe becoming one of the b
  • TRL: Cities must do more to help VRUs
    May 9, 2019
    UK cities must learn from the Netherlands and Denmark if active travel and increased safety for vulnerable road users are to co-exist, says TRL’s Marcus Jones Active travel’ refers to modes of transport in which physical effort is required to undertake purposeful journeys - for example, walking or cycling to school, work or the local shops, as well as walking and standing as part of accessing public transport. The benefits of replacing short car journeys with more active forms of transport are obvious. Act
  • Cooperative road infrastructures - progress and the future
    February 1, 2012
    Robert Bertini, deputy administrator of the USDOT's Research and Innovative Technology Administration, discusses the research and deployment paths of cooperative road infrastructures. High-level analysis by the US's National Highway Traffic Safety Administration (NHTSA) of the potential of Vehicle-to-Infrastructure/Infrastructure-to-Vehicle (V2I/I2V) and Vehicle-to-Vehicle (V2V) technologies indicates that V2V could in exclusivity address a large proportion of crashes involving unimpaired drivers. In fact,
  • Advanced V2X solution combines DSRC and GNSS
    December 5, 2014
    Swiss wireless communications specialist and Australia connected vehicle technology provider Cohda Wireless have joined forces to develop an advanced vehicle to vehicle/infrastructure (V2X) solution. Offering best in class performance, the MK5 was recently demonstrated at the 2014 ITS World Congress in Detroit and is suitable for first-mount automotive electronics, aftermarket products and roadside infrastructure. Cohda’s dedicated short-range communications (DSRC) based V2X system uses accurate satel