Skip to main content

ABI Research: DSRC above Cellular cheaper than implementing C-V2X

Implementing a Dedicated Short-Range Communication (DSRC) above cellular communications is expected to be $13.50 (£9.70) to $15 (£10) lower per Telematics Control Unit than implementing a Cellular Vehicle-to-Everything (C-V2X) solution, according to US-based ABI Research’s analysis of vehicle to everything (V2X). It follows industry discussions which have compared DSRC and C-V2X as technology alternatives for enabling V2X in vehicles to help prevent accidents.
February 7, 2018 Read time: 2 mins
Implementing a Dedicated Short-Range Communication (DSRC) above cellular communications is expected to be $13.50 (£9.70) to $15 (£10) lower per 6224 Telematics Control Unit than implementing a Cellular Vehicle-to-Everything (C-V2X) solution, according to US-based 5725 ABI Research’s analysis of vehicle to everything (V2X). It follows industry discussions which have compared DSRC and C-V2X as technology alternatives for enabling V2X in vehicles to help prevent accidents.


The study suggested that C-V2X’s complexity and requirements add cost over DSRC when considering that V2X is safety-critical technology. It showed that the key architectural differences are LTE ruggedization and automotive qualification, the need for high accuracy clock source, the cellular royalty scheme and the use of Wi-Fi which is included with DSRC for free.

James Hodgson, senior analyst for smart mobility & automotive research at ABI Research, said: "We estimate that in the initial years of deployment, C-V2X plus LTE will carry a system cost between US$13.50 [£9.70]and US$15 [£10] higher than DSRC plus LTE. DSRC, being the longer established and incumbent technology has cost advantages typically associated with deployments in the field and a more competitive ecosystem.”

For more information on companies in this article

Related Content

  • Roadside infrastructure key to in-vehicle deployment
    November 28, 2013
    The implementation of in-vehicle systems will require multilateral cooperation, as Honda’s Sue Bai explains to Colin Sowman. Vehicle manufacturers will shape the future direction of in-vehicle ITS systems, but they can’t do it on their own. So to find out what they see on the horizon, and the obstacles they face, ITS International spoke to Sue Bai, principal engineer in the Automobile Technology Research Department with Honda R&D Americas. Not only does she play an important role in Honda’s US-based ITS
  • Report highlights community impact of new mobility options
    March 29, 2018
    Local authorities and communities must understand the impacts of the new mobility options and regulate to get the transport systems they want, according to a new report. Colin Sowman takes a look. Outside of the big cities plagued with congestion, the existing transportation system(s) often cope adequately, and the ongoing workload (maintenance, safety…) is more than enough to keep local transport authorities busy. Is it, therefore, a good use of public service employees’ time to keep abreast of the raft
  • Improving urban traffic control in Atlanta
    January 27, 2012
    Hugh Colton, Georgia DOT details move to improve urban traffic control in the Atlanta area. With a significant proportion of traffic using freeways and toll-ways, along with a significant investment in roadway infrastructure, urban arterials are often the poor relation when it comes to ITS investment. Hitherto the primary means of Urban Traffic Control (UTC) has been the ubiquitous traffic signal. Many traffic signals still operate in a standalone mode and traffic detection is often broken, leaving the sign
  • Debating a cost-effective means of road user charging
    July 20, 2012
    Does GPS/GNSS-based technology provide a cost-effective means of charging or tolling on a national or international level, or are the issues pertaining to effective enforcement an obstacle. Here, leading equipment manufacturers debate the issue.