Skip to main content

ABI Research: DSRC above Cellular cheaper than implementing C-V2X

Implementing a Dedicated Short-Range Communication (DSRC) above cellular communications is expected to be $13.50 (£9.70) to $15 (£10) lower per Telematics Control Unit than implementing a Cellular Vehicle-to-Everything (C-V2X) solution, according to US-based ABI Research’s analysis of vehicle to everything (V2X). It follows industry discussions which have compared DSRC and C-V2X as technology alternatives for enabling V2X in vehicles to help prevent accidents.
February 7, 2018 Read time: 2 mins
Implementing a Dedicated Short-Range Communication (DSRC) above cellular communications is expected to be $13.50 (£9.70) to $15 (£10) lower per 6224 Telematics Control Unit than implementing a Cellular Vehicle-to-Everything (C-V2X) solution, according to US-based 5725 ABI Research’s analysis of vehicle to everything (V2X). It follows industry discussions which have compared DSRC and C-V2X as technology alternatives for enabling V2X in vehicles to help prevent accidents.


The study suggested that C-V2X’s complexity and requirements add cost over DSRC when considering that V2X is safety-critical technology. It showed that the key architectural differences are LTE ruggedization and automotive qualification, the need for high accuracy clock source, the cellular royalty scheme and the use of Wi-Fi which is included with DSRC for free.

James Hodgson, senior analyst for smart mobility & automotive research at ABI Research, said: "We estimate that in the initial years of deployment, C-V2X plus LTE will carry a system cost between US$13.50 [£9.70]and US$15 [£10] higher than DSRC plus LTE. DSRC, being the longer established and incumbent technology has cost advantages typically associated with deployments in the field and a more competitive ecosystem.”

For more information on companies in this article

Related Content

  • Use of autonomous vehicles and drones expected to rise in US transportation industry
    August 4, 2017
    A recent B2B technology survey by ABI Research of 455 US-based companies across nine verticals finds that 30 per cent of transportation industry respondents plan to introduce robotics into their business operations within the next year, with another 22 per cent actively assessing the technology. Despite notable near-term progress in robotics deployments among the respondents to support e-commerce and delivery growth, their lack of familiarity with nascent technologies such as AR, blockchain, 5G, autonomous
  • Growth of OEM telematics in new passenger cars
    March 3, 2016
    The latest research by ABI Research forecasts the global penetration of embedded and hybrid factory installed OEM telematics in new passenger cars to exceed 72 per cent by 2021. Growth will mainly be driven by key volume car OEMs in the US, European Union and China markets. Brands within these markets showing accelerated growth include GM, which expects to reach 12 million OnStar subscribers globally by the end of 2016, including its Opel brand in Europe and Cadillac in China; and Ford, which claims to have
  • Bringing V2I and V2V communications to workzone safety
    January 26, 2012
    Imran Hayee of the University of Minnesota Duluth's Department of Electrical and Computer Engineering talks about efforts to bring V2I and V2V communications into work zones. With USDOT backing and under the auspices of the ITS Joint Program Office Connected Vehicle Research (formerly IntelliDrive) research programme, M. Imran Hayee of the University of Minnesota Duluth's Department of Electrical and Computer Engineering along with team of his students, have been conducting research into the application of
  • ITS America publishes connected vehicle guidance
    April 22, 2015
    Guidance on the likely impact of multipath communications on connected vehicle development has been published by ITS America. ITS America’s Connected Vehicle Technical Insight looks at the challenges and opportunities wireless interoperability could provide in vehicle applications. In particular the 22-page document examines the processes by which data can be transferred from one vehicle to another (V2V), or between a vehicle and the infrastructure (V2I).