Skip to main content

Telstra and Cohda Wireless conduct first Australian V2P technology trial

Telstra, in partnership with Cohda Wireless, has successfully conducted Australia’s first test of vehicle-to-pedestrian (V2P) technology over a mobile network in South Australia. The trial demonstrated vehicles interacting directly with pedestrians’ and cyclists’ mobile phones providing early-warning collision detection and alerts via an application installed on the phones. The technology was tested using some common scenarios that occur every day in Australia, such as a car and a cyclist approaching a blin
July 28, 2017 Read time: 2 mins
Telstra, in partnership with 6667 Cohda Wireless, has successfully conducted Australia’s first test of vehicle-to-pedestrian (V2P) technology over a mobile network in South Australia.


The trial demonstrated vehicles interacting directly with pedestrians’ and cyclists’ mobile phones providing early-warning collision detection and alerts via an application installed on the phones.

The technology was tested using some common scenarios that occur every day in Australia, such as a car and a cyclist approaching a blind corner, a car reversing out of a driveway, and a car approaching a pedestrian crossing.

The trial was conducted as part of Telstra’s vehicle-to-everything (V2X) project, which includes vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) in addition to V2P.

Chief technology Officer Håkan Eriksson said, “The most important outcome of V2X technology is the increased safety for road users, as the impact of human error can be minimised by helping vehicles communicate with each other and react to their surroundings.

“This is the first time V2P technology has been trialled in Australia on a 4G network, and is an important step on the journey to fully-autonomous vehicles on Australian roads. This follows our successful trials of V2I in October 2016 and V2V in February 2017, also completed in partnership with Cohda.”

Related Content

  • August 19, 2015
    First VMS installed on Gateway WA project
    Australian signs manufacturer, A.D. Engineering International was selected by DownerMouchel to provide overhead variable message signs for the Gateway WA project, which aims to improve the safety and efficiency of one of Western Australia’s most important transport hubs around Perth airport. Gateway WA was selected as the alliance partner by Main Roads Western Australia to deliver the $1 billion Gateway WA Perth Airport and Freight Access Project on behalf of the Australian and Western Australian Governm
  • March 16, 2016
    Observing driver behaviour in real traffic condition
    The EU’s UDRIVE project will investigate driver behaviour in terms of road safety and the decarbonisation of road transport, as Nicole van Nes and Silvia Curbelo explain. There were nearly 25,700 fatalities on European Union (EU) roads in 2014 or, to look it another way, roughly 70 people are killed in traffic accidents on European roads every day - and many more are injured. Around 22% of the fatalities are pedestrians, 15% will be motorcycle riders and 8% cyclists. So despite the improvements in road safe
  • November 5, 2015
    Volvo Cars developing kangaroo detection system
    Volvo Cars is developing kangaroo detection technology to solve one of the most costly causes of traffic collisions in Australia. A team of Volvo Cars safety experts is in the Australian Capital Territory to film and study the roadside behaviour of kangaroos in their natural habitat. The data Volvo Cars collects will be used to develop the first ever kangaroo detection and collision avoidance system. According to the National Roads & Motorists’ Association (NRMA) there are over 20,000 kangaroo strikes on A
  • January 30, 2012
    IntelliDrive, connectivity, safety, mobility and the environment?
    Shelley Row, Director of the ITS Joint Program Office, US Department of Transportation, details the new five-year ITS Strategic Research Plan. Imagine a world where vehicles of all types can talk to each other in order to reduce or eliminate crashes, where vehicles can talk to traffic signals to eliminate unnecessary stops, where travellers can get accurate travel time information about all modes and route options, and where transportation managers have data which allows them to accurately assess multimodal