Skip to main content

Telstra and Cohda Wireless conduct first Australian V2P technology trial

Telstra, in partnership with Cohda Wireless, has successfully conducted Australia’s first test of vehicle-to-pedestrian (V2P) technology over a mobile network in South Australia. The trial demonstrated vehicles interacting directly with pedestrians’ and cyclists’ mobile phones providing early-warning collision detection and alerts via an application installed on the phones. The technology was tested using some common scenarios that occur every day in Australia, such as a car and a cyclist approaching a blin
July 28, 2017 Read time: 2 mins
Telstra, in partnership with 6667 Cohda Wireless, has successfully conducted Australia’s first test of vehicle-to-pedestrian (V2P) technology over a mobile network in South Australia.


The trial demonstrated vehicles interacting directly with pedestrians’ and cyclists’ mobile phones providing early-warning collision detection and alerts via an application installed on the phones.

The technology was tested using some common scenarios that occur every day in Australia, such as a car and a cyclist approaching a blind corner, a car reversing out of a driveway, and a car approaching a pedestrian crossing.

The trial was conducted as part of Telstra’s vehicle-to-everything (V2X) project, which includes vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) in addition to V2P.

Chief technology Officer Håkan Eriksson said, “The most important outcome of V2X technology is the increased safety for road users, as the impact of human error can be minimised by helping vehicles communicate with each other and react to their surroundings.

“This is the first time V2P technology has been trialled in Australia on a 4G network, and is an important step on the journey to fully-autonomous vehicles on Australian roads. This follows our successful trials of V2I in October 2016 and V2V in February 2017, also completed in partnership with Cohda.”

Related Content

  • June 6, 2016
    Autonomous driving – what can we really expect?
    Dave Marples of Technolution BV looks beyond the hype to the practical implementation of autonomous vehicles. Having looked at the development of this sector for some time, I am concerned about the current state of autonomous driving development as engineering (and marketing) have run way ahead of the wider systemic, and legislative, requirements to support an autonomous future.
  • October 2, 2020
    C-V2X protects roadside workers in Virginia 
    Audi, VDoT and Qualcomm work on deployment which utilises Q8 vehicles and C-V2X vests
  • May 10, 2017
    3M reflect on why CAVs need lines and signs
    Tammy Meehan and Thomas Hedblom of 3M consider the ongoing development of technology needed to introduce connected and autonomous vehicles. The transportation industry is in the midst of the most dramatic shift since Henry Ford introduced horseless carriages. Already we are seeing the increased use of advanced driver assistance systems (ADAS) which, along with the introduction of autonomous vehicles in the next few decades, will bring profound changes to vehicles and the environment in which they operate.
  • March 14, 2012
    Automatic signal control to prevent emergency vehicle collisions?
    Field trials under way in Arizona promise eradication of accidents between emergency vehicles at intersections – as part of a national focus on ‘intelligent signal’ infrastructure. Collisions between police cars, ambulances and fire crews as they reach intersections at the same time, with equal priority given by all signals set on red, are as serious as they sound absurd. For emergency teams and those in need of their help, the consequences are dire. The solution could come from application of connected veh