Skip to main content

Siemens introduces 3G wireless option for UTC communications

A new 3G wireless communications solution which allows Siemens UTMC OTUs to be connected to the company’s PC SCOOT UTC instation has been launched by the company following extensive field trials. The newly released 3G option is available on Gemini2 and is provided by the use of an approved 3G router and antenna kit and is quick and easy to install. It allows junctions to be added onto the UTC system without the need for physically wired or fibre links, reducing installation and civil engineering costs. Acc
November 13, 2012 Read time: 2 mins
A new 3G wireless communications solution which allows 6869 Siemens UTMC OTUs to be connected to the company’s PC SCOOT UTC instation has been launched by the company following extensive field trials.

The newly released 3G option is available on Gemini2 and is provided by the use of an approved 3G router and antenna kit and is quick and easy to install.  It allows junctions to be added onto the UTC system without the need for physically wired or fibre links, reducing installation and civil engineering costs.

According to the company’s head of product management, Keith Manston, Siemens UTMC OTUs are designed to give optimum performance and when used with 3G wireless networks they offer a number of benefits. ‘In addition to the reduced cost of installation, running costs can be significantly lower than existing leased lines. More importantly, as BT has recently confirmed plans to withdraw its retail TDM services by the end of March 2018, it is now becoming increasingly important for traffic managers and local authorities to consider alternative communications options and develop a longer term transition plan’, he said.

Advances within the UTMC arena, in particular the introduction of the UG405 UTMC protocol and SCOOT MC3 has enabled SCOOT to be more tolerant of time delays in communications between the UTC software and connected Outstation Transmission Units. In particular, this has increased the potential use of a number of alternative communication options available to users including 3G wireless networks.

Related Content

  • Challenges and benefits of adaptive signal control
    April 23, 2013
    Delcan’s Joe Lam, who managed the first computerised signal system in the world, provides an expert insight into adaptive signal control. There are no gadgets in the world that regulate our daily behaviour as much as traffic signals, except perhaps our mobile phones. It has been estimated that the daily commuter goes through at least 10 signals on his journey to work. However, unlike mobile phones, traffic signals cannot be ignored or switched off by their daily users, at least not without legal consequence
  • Ho Chi Minh City ‘must invest in transportation system’
    November 21, 2014
    Ho Chi Minh City (HCMC) could generate economic benefits of US$1.4 billion by investing in making its transportation system more resilient in extreme weather conditions, a study released by Siemens and consulting firm Arup today shows. Siemens and the Arup prepared the study, to show how intelligent infrastructure can assist cities in addressing the increased demand and at the same time offer better protection of their transport networks against extreme weather events. Calculations based on a review o
  • Weigh in Motion gets smarter
    January 4, 2023
    Weigh in Motion technology is at the forefront of protecting road surfaces and helping enforcement activity – but could it also play a key role in the development of Smart Cities?
  • TEXpress adds reversible managed lanes
    April 19, 2017
    Land availability restrictions and tidal traffic flows have led to the implementation of a novel managed lane configuration in Texas, as Colin Sowman finds out. Dealing with traffic congestion related to the ‘tidal flows’ caused by large numbers of commuters making their way into major business hubs in the morning and returning to the suburbs in the evening, has seen the widespread use of adaptive signal timing and even reversible lanes.