Skip to main content

Pilot shows how wi-fi data could improve London Underground journeys

Journeys on London Underground could be improved through Transport for London (TfL) harnessing wi-fi data to make more information available to customers as they move around London, new research has shown. The four-week TfL pilot, which ran between November and December last year, studied how depersonalised wi-fi connection data from customers' mobile devices could be used to better understand how people navigate the London Underground network, allowing TfL to improve the experience for customers.
September 11, 2017 Read time: 3 mins
Journeys on London Underground could be improved through 1466 Transport for London (TfL) harnessing wi-fi data to make more information available to customers as they move around London, new research has shown.


The four-week TfL pilot, which ran between November and December last year, studied how depersonalised wi-fi connection data from customers' mobile devices could be used to better understand how people navigate the London Underground network, allowing TfL to improve the experience for customers.

The pilot focused on 54 stations within Zones 1-4 and saw more than 509 million depersonalised 'probing requests', or pieces of data, collected from 5.6 million mobile devices making around 42 million journeys. The data collected was depersonalised, so that no individuals could be identified, and no browsing data was collected from devices. No data collected through the trial was made available to any third parties; the pilot included clear communication with customers about how to opt out should they wish to do so.

These journeys were analysed by TfL's in-house analytics team and broken into different aggregated 'movement types' to help understand what customers were doing at particular points of their journeys - such as entering or exiting a station, changing between lines or just passing through the station while on a train.

By using this data, TfL was able to get a much more accurate understanding of how people move through stations, interchange between services and how crowding develops.

The pilot revealed a number of results that could not have been detected from ticketing data or paper-based surveys. For example, analysis showed that customers travelling between King's Cross St Pancras and Waterloo take at least 18 different routes, with around 40% per cent of customers observed not taking one of the two most popular routes.

The data collected through the pilot could have a number of benefits for TfL and its customers. These include allowing staff to better inform customers of the best way to avoid disruption or unnecessary crowding and helping customers plan the route that best suits them - whether based on travel time, crowding or walking distance. It could also enable greater expertise in providing real-time information to customers as they travel across London and help to further prioritise transport investment to improve services and address regular congestion points - ensuring the maximum benefits to customers.

While the usual ticketing data for major interchange stations such as Oxford Circus can show the levels of people entering and exiting the stations, it cannot show the huge numbers of people interchanging during peak hours, or precise local areas where crowding occurs on platforms or around escalators, which wi-fi data is able to do.

TfL has now begun discussions with key stakeholders, including the Information Commissioner's Office, privacy campaigners and consumer groups about how this data collection could be undertaken on a permanent basis, possibly across the full Tube network.

For more information on companies in this article

Related Content

  • Smartphone solution for parking performance
    March 31, 2017
    Automated parking offers optimised space utilisation and fewer damage complaints as David Crawford discovers. As cars become smarter, technology designed to make parking them more straightforward is developing in parallel. In turn, it is becoming clear that the places where vehicles spend much of their time will need to respond – more comprehensively than by supporting established aids such as smartphone-based parking location and reservation, or payment for time used.
  • Aimsun takes part in driver data study to improve C/AVs
    November 14, 2018
    Aimsun is taking part in a UK study which is using human driver data to help improve the performance and acceptability of connected and autonomous vehicles (C/AVs). The one-year project, Learning through Ambient Driving Styles for Autonomous Vehicles (LAMBDA-V), will also look at how driver behaviour can be analysed and used to accelerate the adoption of C/AVs. Aimsun says new rules for safer and more efficient driving behaviour could be created from existing vehicles, based on road laws and on how h
  • Why the US said ‘yes’ to public transportation on 8 November
    March 29, 2017
    Historic funding boost reflects America’s awareness of transit’s contribution to economic growth and quality of life. Something unexpected happened on Election Day 2016, a result nobody expected; public transportation was a clear winner. There were 49 transit-related funding initiatives on ballots across the nation, of which about 70% were passed.
  • More openness - the simple answer to transport's data issues
    October 22, 2018
    Public transit agencies create a lot of data – but using it constructively to solve transportation issues has been a problem. Ben Winokur and Luke Segars think they have the answer: greater openness. Today, more people are connected through smartphones than ever before - and they’re using them for more than texting and calling. People are searching for jobs on their devices, dating, shopping and even managing their finances. But Forbes reports that only a select few companies leverage all the technology at