Skip to main content

Pilot shows how wi-fi data could improve London Underground journeys

Journeys on London Underground could be improved through Transport for London (TfL) harnessing wi-fi data to make more information available to customers as they move around London, new research has shown. The four-week TfL pilot, which ran between November and December last year, studied how depersonalised wi-fi connection data from customers' mobile devices could be used to better understand how people navigate the London Underground network, allowing TfL to improve the experience for customers.
September 11, 2017 Read time: 3 mins
Journeys on London Underground could be improved through 1466 Transport for London (TfL) harnessing wi-fi data to make more information available to customers as they move around London, new research has shown.


The four-week TfL pilot, which ran between November and December last year, studied how depersonalised wi-fi connection data from customers' mobile devices could be used to better understand how people navigate the London Underground network, allowing TfL to improve the experience for customers.

The pilot focused on 54 stations within Zones 1-4 and saw more than 509 million depersonalised 'probing requests', or pieces of data, collected from 5.6 million mobile devices making around 42 million journeys. The data collected was depersonalised, so that no individuals could be identified, and no browsing data was collected from devices. No data collected through the trial was made available to any third parties; the pilot included clear communication with customers about how to opt out should they wish to do so.

These journeys were analysed by TfL's in-house analytics team and broken into different aggregated 'movement types' to help understand what customers were doing at particular points of their journeys - such as entering or exiting a station, changing between lines or just passing through the station while on a train.

By using this data, TfL was able to get a much more accurate understanding of how people move through stations, interchange between services and how crowding develops.

The pilot revealed a number of results that could not have been detected from ticketing data or paper-based surveys. For example, analysis showed that customers travelling between King's Cross St Pancras and Waterloo take at least 18 different routes, with around 40% per cent of customers observed not taking one of the two most popular routes.

The data collected through the pilot could have a number of benefits for TfL and its customers. These include allowing staff to better inform customers of the best way to avoid disruption or unnecessary crowding and helping customers plan the route that best suits them - whether based on travel time, crowding or walking distance. It could also enable greater expertise in providing real-time information to customers as they travel across London and help to further prioritise transport investment to improve services and address regular congestion points - ensuring the maximum benefits to customers.

While the usual ticketing data for major interchange stations such as Oxford Circus can show the levels of people entering and exiting the stations, it cannot show the huge numbers of people interchanging during peak hours, or precise local areas where crowding occurs on platforms or around escalators, which wi-fi data is able to do.

TfL has now begun discussions with key stakeholders, including the Information Commissioner's Office, privacy campaigners and consumer groups about how this data collection could be undertaken on a permanent basis, possibly across the full Tube network.

Related Content

  • Big data and self-driving cars: New studies from ITF
    May 29, 2015
    Two new reports launched by the International Transport Forum (ITF) during the Annual Summit of Transport Ministers in Leipzig, Germany, highlight issues for the transport sector: the use of big data and the trend towards automated cars. The ITF claims that failing to ensure strong privacy protection in the collection and processing of location data may result in a regulatory backlash against the technology, which could hamper innovation and limit the social and economic benefits the use of such data delive
  • Road usage charge pilot under way
    November 22, 2012
    The Oregon Department of Transportation (ODOT) is undertaking a pilot project to test the next generation of a road usage charge system designed to address funding gaps caused by a rise in fuel efficiency and a decline in gas tax revenue. Around forty volunteers have begun testing the new system, where, instead of paying the gas tax, automatically added at the pump, pilot participants will pay a per mile charge based on the number of miles they drive. The charge is roughly equal to the amount of gas tax the
  • Canada looks to HOT lanes to tackle congestion
    March 16, 2017
    David Crawford sees an evidence-based approach to HOT lane conversions. Canada’s first high occupancy toll (HOT) lanes opened on 16 September 2016 as a pilot on a 16.5km section of existing high occupancy vehicle (HOV) lanes running in both directions along Toronto’s Queen Elizabeth Way. Promised in two recent budgets
  • Cubic: predictive analytics is putting fortune tellers out of business
    November 23, 2018
    The rise of machine learning and artificial intelligence means that fortune tellers will soon be out of business. Ed Chavis takes a behind the scenes look at the world of predictive analytics ver since organisations started taking advantage of insights derived from Big Data, data scientists concentrated their efforts on the ability to make correct assumptions about the future. A few years later, with the help of automation, developments in machine learning (ML) and advancements in the application of a