Skip to main content

MIT researchers hack into traffic lights

With permission from a local road agency, researchers in from the University of Michigan hacked into nearly 100 wirelessly networked traffic lights, highlighting security issues that they say are likely to pervade networked traffic infrastructure around the country. More than 40 states currently use such systems to keep traffic flowing as efficiently as possible, helping to reduce emissions and delays. The team, led by University of Michigan computer scientist J. Alex Halderman, found three major weaknes
August 22, 2014 Read time: 3 mins

With permission from a local road agency, researchers in from the 5594 University of Michigan hacked into nearly 100 wirelessly networked traffic lights, highlighting security issues that they say are likely to pervade networked traffic infrastructure around the country. More than 40 states currently use such systems to keep traffic flowing as efficiently as possible, helping to reduce emissions and delays.

The team, led by University of Michigan computer scientist J. Alex Halderman, found three major weaknesses in the traffic light system: unencrypted wireless connections, the use of default usernames and passwords that could be found online and a debugging port that is easy to attack.

“The vulnerabilities we discover in the infrastructure are not a fault of any one device or design choice, but rather show a systemic lack of security consciousness,” the researchers report in a paper they’re presenting this week at a computer security conference. They did not disclose exactly where in Michigan they did the research.

Although the road agency responsible for implementing the system has never faced serious computer security threats, the possibility will become more of a problem as transportation authorities and car makers test new ways for infrastructure and vehicles to communicate in order to reduce congestion and accidents.

“They need to be worrying about this and think about security - it needs to be one of their top priorities,” says Branden Ghena, a graduate student who worked on the project. “It’s hard to get people to care about these things in the same way that it’s hard to get people to change their passwords.”

Wirelessly networked traffic lights have four key components. There are sensors that detect cars, controllers that use the sensor data to control the lights at a given intersection, radios for wireless communication among intersections, and malfunction management units (MMUs), which return lights to safe fallback configurations if an ‘invalid’ configuration occurs. For example, if somehow every light at an intersection is green, the system might fall back to having them all become flashing red lights.

The Michigan researchers found that anyone with a computer that can communicate at the same frequency as the intersection radios, in this case, 5.8 gigahertz, could access the entire unencrypted network. It takes just one point of access to get into the whole system.

After gaining access to one of the controllers in their target network, the researchers were able to turn all lights red or alter the timing of neighbouring intersections, for example, to make sure someone hit all green lights on a given route. They could also trigger the lights’ MMUs by attempting invalid configurations.

At the end of their report, Halderman and his group propose simple recommendations for improving the security of traffic infrastructure. First and foremost, traffic-system administrators should not use default usernames and passwords. Also, they should stop broadcasting communications unencrypted for ‘casual observers and curious teenagers’ to see.

The researchers note that their study has implications beyond traffic lights. More and more devices like voting machines, cars, and medical devices are computer controlled and will ultimately be networked. This phase change, as they call it, comes with “potential for catastrophic security failures.”

Related Content

  • April 27, 2015
    Rail signalling system ‘could be liable to hacking’
    A new rail signalling system to be installed across the UK could be liable to hacking, a government adviser has warned. Professor David Stupples told the BBC that the European Rail Traffic Management system (ERTMS) could be exposed to malicious software, or malware, and used to cause an accident perhaps telling the system the train is slowing when down when it is speeding up. "However, he said governments aren't complacent."Certain ministers know this is absolutely possible and they are worried about
  • November 2, 2016
    Prevention is better than cure says Antaira’s David Zaveski
    Antaira’s David Zaveski looks at how to improve the resilience of Ethernet systems. Detection and monitoring, and the subsequent management of transport systems, is becoming ever more sophisticated and also integrated as ITS spreads wider across cities and along highways and rail corridors.
  • October 31, 2018
    Less than 1% of UK drivers aware of hacking threats – new research
    Nearly all UK drivers with keyless technology are unaware of the major digital threats posed by hackers, according to research conducted by MoneySuperMarket. The study reveals that 99% of drivers are unaware of security flaws such as phone phishing, where hackers send emails to drivers which contain malicious links that connect to a car’s Wi-Fi features and take control. MoneySuperMarket says 16% of drivers - or someone they know - have experienced car hacking. Also, eight out of 10 drivers do not k
  • December 14, 2012
    Preparing for connected vehicle technology challenge
    A decision on mandating connected vehicle technology is expected in 2013, when associated political issues such as privacy are likely to come to the fore. Pete Goldin investigates industry’s preparations for the challenge. Once in a while new technology comes along with the power to revolutionise the way we live our lives. Connected vehicle technology could be such a game changer. If mandated in the United States, it could quickly become the status quo for transportation in the US, and such a disruptive cha