Skip to main content

MIT researchers hack into traffic lights

With permission from a local road agency, researchers in from the University of Michigan hacked into nearly 100 wirelessly networked traffic lights, highlighting security issues that they say are likely to pervade networked traffic infrastructure around the country. More than 40 states currently use such systems to keep traffic flowing as efficiently as possible, helping to reduce emissions and delays. The team, led by University of Michigan computer scientist J. Alex Halderman, found three major weaknes
August 22, 2014 Read time: 3 mins

With permission from a local road agency, researchers in from the 5594 University of Michigan hacked into nearly 100 wirelessly networked traffic lights, highlighting security issues that they say are likely to pervade networked traffic infrastructure around the country. More than 40 states currently use such systems to keep traffic flowing as efficiently as possible, helping to reduce emissions and delays.

The team, led by University of Michigan computer scientist J. Alex Halderman, found three major weaknesses in the traffic light system: unencrypted wireless connections, the use of default usernames and passwords that could be found online and a debugging port that is easy to attack.

“The vulnerabilities we discover in the infrastructure are not a fault of any one device or design choice, but rather show a systemic lack of security consciousness,” the researchers report in a paper they’re presenting this week at a computer security conference. They did not disclose exactly where in Michigan they did the research.

Although the road agency responsible for implementing the system has never faced serious computer security threats, the possibility will become more of a problem as transportation authorities and car makers test new ways for infrastructure and vehicles to communicate in order to reduce congestion and accidents.

“They need to be worrying about this and think about security - it needs to be one of their top priorities,” says Branden Ghena, a graduate student who worked on the project. “It’s hard to get people to care about these things in the same way that it’s hard to get people to change their passwords.”

Wirelessly networked traffic lights have four key components. There are sensors that detect cars, controllers that use the sensor data to control the lights at a given intersection, radios for wireless communication among intersections, and malfunction management units (MMUs), which return lights to safe fallback configurations if an ‘invalid’ configuration occurs. For example, if somehow every light at an intersection is green, the system might fall back to having them all become flashing red lights.

The Michigan researchers found that anyone with a computer that can communicate at the same frequency as the intersection radios, in this case, 5.8 gigahertz, could access the entire unencrypted network. It takes just one point of access to get into the whole system.

After gaining access to one of the controllers in their target network, the researchers were able to turn all lights red or alter the timing of neighbouring intersections, for example, to make sure someone hit all green lights on a given route. They could also trigger the lights’ MMUs by attempting invalid configurations.

At the end of their report, Halderman and his group propose simple recommendations for improving the security of traffic infrastructure. First and foremost, traffic-system administrators should not use default usernames and passwords. Also, they should stop broadcasting communications unencrypted for ‘casual observers and curious teenagers’ to see.

The researchers note that their study has implications beyond traffic lights. More and more devices like voting machines, cars, and medical devices are computer controlled and will ultimately be networked. This phase change, as they call it, comes with “potential for catastrophic security failures.”

Related Content

  • January 11, 2022
    Connecting DoTs with IoT for secure, connected transportation systems
    Michelle Maggiore of Cisco outlines how connected roadways and intersections can help improve safety, reduce traffic congestion, and minimise our carbon footprint
  • March 29, 2017
    When speed compliance becomes a safety issue
    David Crawford finds that softly, softly can be safely, safely when it comes to speed enforcement. Comedians and controversial TV presenters have long made jokes about having to watch the speedometer so closely as they pass speed camera after speed camera that they mow down bus queues. But the joke may have some factual basis according to a study by researchers from the University of Western Australia.
  • August 15, 2016
    Millions of cars at risk due to flaw in keyless entry systems, say researchers
    Researchers at the University of Birmingham in the UK have found that millions of cars could be vulnerable to theft, due to a flaw in keyless entry systems in many models. The findings, presented at the 25th USENIX Security Symposium in Austin, Texas, highlight two case studies that outline the ease at which criminals could gain access to numerous vehicles with relatively simple and inexpensive methods. Both attacks use a cheap, easily available piece of radio hardware to intercept signals from a key
  • December 8, 2016
    Data handling important for autonomous vehicles
    Data handling is becoming an ever-greater part of transportation and never more so than with autonomous vehicles, as Andrew Bardin Williams hears from some big names.