Skip to main content

University develops rail crossing safety technology

Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings. The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibili
June 14, 2013 Read time: 2 mins
Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings.

The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibility of a collision and alert the driver with in-car audio-visual alerts that escalate in volume and intensity as the train gets closer to the crossing.

Director of the Centre for Technology Infusion, Professor Jack Singh, says that the technology underwent a limited trial in Melbourne last year, with eight trains involved over six weeks.

The Queensland Government’s trial will involve a larger number of trains, as well as heavy and commercial vehicles, over a six-month period.

“The project will greatly benefit driving safety in Australia. As a leading Australian technology and underpinned by Australian expertise, there is the added benefit of export potential,” said Professor McGaw of the Faculty of Science, Technology and Engineering.

With around 9,500 level crossings on Australian roads, technology that can alert drivers to approaching trains is of considerable benefit at those crossings which have no flashing lights or boom barriers – approximately two thirds of all level crossings in Australia.

Professor Jack Singh explained the benefits of the technology extended well beyond improving level crossing safety. “Collision warning systems including Cooperative Intelligent Transport Systems technology have been hailed by the motor vehicle industry as the next area of major road safety innovation, following in the footsteps of seat belts, airbags and ABS systems to save lives on the roads,” he said.

Related Content

  • New system to prevent Hazchem and over-height vehicles entering tunnel
    August 20, 2015
    An impending move to free-flow charging prompted a search for automated dangerous goods identification and over-height detection systems at the Thames Crossing to the east of London. Manned toll booths are increasingly being consigned to history by the onslaught of all-electronic charging. However, a secondary function of the traditional manned plazas has been to prevent non-compliant vehicles using the facility or to tell a driver that that they need to use a specific lane or wait for an escort. Automating
  • LiDAR sets its sights on future problems
    February 23, 2017
    AAdvances in LiDAR are helping transport authorities improve services and identify potential problem areas, as geospatial technology expert Dr Neil Slatcher explains. The effects of climate change on the transport infrastructure have long been a cause of concern within the transportation sector - and not only on the structures themselves but also on the surrounding areas. This year, those concerns have become reality with landslides, structural collapses and surfacing issues impacting services across the wo
  • New research assesses potential for driver-assistive truck platooning
    May 29, 2015
    The Phase One Final Report of the Driver-Assistive Truck Platooning (DATP) initiative was recently released by the research team. The DATP truck platooning research, which was funded by a grant from the US Department of Transportation's Exploratory Advanced Research program, utilises radar, vehicle-to-vehicle communications and video technologies to decrease over-the-road truck headways, with the objective of improving fuel economy without compromising safety.
  • Newcastle rush-hour traffic trials get the go-ahead
    February 15, 2013
    Traffic trials aimed at streamlining the rush-hour commute in the UK’s north-east have been given the green light. The project in Newcastle involves new satellite navigation technology which helps drivers adjust their speed so they can pass through a series of lights on green. The European project is being led by Newcastle University and Newcastle City Council, and aims to reduce city centre congestion and pollution associated with stop-start driving. Phil Blythe, Professor of Intelligent Transport Systems