Skip to main content

University develops rail crossing safety technology

Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings. The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibili
June 14, 2013 Read time: 2 mins
Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings.

The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibility of a collision and alert the driver with in-car audio-visual alerts that escalate in volume and intensity as the train gets closer to the crossing.

Director of the Centre for Technology Infusion, Professor Jack Singh, says that the technology underwent a limited trial in Melbourne last year, with eight trains involved over six weeks.

The Queensland Government’s trial will involve a larger number of trains, as well as heavy and commercial vehicles, over a six-month period.

“The project will greatly benefit driving safety in Australia. As a leading Australian technology and underpinned by Australian expertise, there is the added benefit of export potential,” said Professor McGaw of the Faculty of Science, Technology and Engineering.

With around 9,500 level crossings on Australian roads, technology that can alert drivers to approaching trains is of considerable benefit at those crossings which have no flashing lights or boom barriers – approximately two thirds of all level crossings in Australia.

Professor Jack Singh explained the benefits of the technology extended well beyond improving level crossing safety. “Collision warning systems including Cooperative Intelligent Transport Systems technology have been hailed by the motor vehicle industry as the next area of major road safety innovation, following in the footsteps of seat belts, airbags and ABS systems to save lives on the roads,” he said.

Related Content

  • Upgrading rail signalling systems in an urban environment: lessons from Europe
    October 13, 2015
    WSP/Parsons Brinckerhoff has launched a series of technical forums with European rail specialists in Melbourne, Sydney, Brisbane and Auckland. Its Swedish director Mats Önner and senior consultant Michael Fransson will share their knowledge and experience of upgrading signalling infrastructure on railways throughout Sweden, Norway and Denmark.
  • VRU safety report urges enforcement
    March 18, 2020
    Enforcement must be at the heart of a drive to reduce vulnerable road user deaths and injuries, says the latest report from the European Transport Safety Council. Its facts and figures give authorities the justification to invest more in camera technology and other ITS solutions
  • Data holds the key to combating VRU casualties
    May 8, 2015
    Accident analysis software can help authorities identify common causes and make best use of their budgets, as Will Baron explains. More than 1.2 million people die on the world’s roads each year and according to the World Health Organisation, half of these are pedestrians and vulnerable road users (those whose vehicle does not have a protective shell, such as motorcyclists and cyclists). While much has been done to improve road safety and cut the number of deaths and serious injuries on our roads, a great d
  • Western Australia trials C-ITS technology
    May 26, 2025
    Main Roads WA said city of Perth is ready for connected vehicle technology