Skip to main content

University develops rail crossing safety technology

Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings. The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibili
June 14, 2013 Read time: 2 mins
Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings.

The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibility of a collision and alert the driver with in-car audio-visual alerts that escalate in volume and intensity as the train gets closer to the crossing.

Director of the Centre for Technology Infusion, Professor Jack Singh, says that the technology underwent a limited trial in Melbourne last year, with eight trains involved over six weeks.

The Queensland Government’s trial will involve a larger number of trains, as well as heavy and commercial vehicles, over a six-month period.

“The project will greatly benefit driving safety in Australia. As a leading Australian technology and underpinned by Australian expertise, there is the added benefit of export potential,” said Professor McGaw of the Faculty of Science, Technology and Engineering.

With around 9,500 level crossings on Australian roads, technology that can alert drivers to approaching trains is of considerable benefit at those crossings which have no flashing lights or boom barriers – approximately two thirds of all level crossings in Australia.

Professor Jack Singh explained the benefits of the technology extended well beyond improving level crossing safety. “Collision warning systems including Cooperative Intelligent Transport Systems technology have been hailed by the motor vehicle industry as the next area of major road safety innovation, following in the footsteps of seat belts, airbags and ABS systems to save lives on the roads,” he said.

Related Content

  • Dynamic charging boosts electric vehicles’ potential
    December 16, 2014
    With an increasing need to use electric vehicles in city centres to reduce pollution, David Crawford looks at various solutions to power delivery. The UN’s September 2014 Climate Summit has added fresh momentum to the drive to increase urban electric vehicle (EV) takeup. It has launched the Urban Electric Mobility Initiative, which wants to see EVs accounting for 30% of all urban travel by 2030, and make cities worldwide more friendly to their use. Encouragingly, the plan is being well supported by commerci
  • ITS Australia announces Max Lay award winner
    October 8, 2020
    Dr Peter Sweatman receives lifetime achievement recognition for his transport career
  • US to test connected vehicle technologies in six cities
    April 25, 2012
    The US Department of Transportation has announced the six cities where it will hold Driver Acceptance Clinics for the connected vehicle programme. The first clinic will be held in Brooklyn, MI, near Detroit, in August, while the remaining clinics will be held in Minneapolis, Orlando, FL, Blacksburg, VA, Dallas and San Francisco.
  • HMI Technologies partners with New South Wales for self-driving vehicle trial
    August 2, 2017
    New South Wales government in Australia has announced the state's first automated vehicle trial, with New Zealand’s HMI Technologies as the project's lead partner. Taking place at Sydney's Olympic Park the public will get to experience short journeys aboard the automated smart shuttle after preliminary safety tests are complete. The self-driving, fully electric vehicle carries up to 15 people and is programmed to navigate around the scenic grounds, venues and businesses at Sydney’s Olympic Park. The trial i