Skip to main content

University develops rail crossing safety technology

Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings. The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibili
June 14, 2013 Read time: 2 mins
Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings.

The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibility of a collision and alert the driver with in-car audio-visual alerts that escalate in volume and intensity as the train gets closer to the crossing.

Director of the Centre for Technology Infusion, Professor Jack Singh, says that the technology underwent a limited trial in Melbourne last year, with eight trains involved over six weeks.

The Queensland Government’s trial will involve a larger number of trains, as well as heavy and commercial vehicles, over a six-month period.

“The project will greatly benefit driving safety in Australia. As a leading Australian technology and underpinned by Australian expertise, there is the added benefit of export potential,” said Professor McGaw of the Faculty of Science, Technology and Engineering.

With around 9,500 level crossings on Australian roads, technology that can alert drivers to approaching trains is of considerable benefit at those crossings which have no flashing lights or boom barriers – approximately two thirds of all level crossings in Australia.

Professor Jack Singh explained the benefits of the technology extended well beyond improving level crossing safety. “Collision warning systems including Cooperative Intelligent Transport Systems technology have been hailed by the motor vehicle industry as the next area of major road safety innovation, following in the footsteps of seat belts, airbags and ABS systems to save lives on the roads,” he said.

Related Content

  • Get connected
    May 18, 2012
    Delegates at National Harbor this week have opportunity to gain first hand experience of a national connected vehicle program Vehicles of the test fleet of an extensive research program are being put through their paces each day of this year’s ITS America Annual Meeting. With the key objective of showing how vehicles from different manufacturers can communicate and understand each other, technology of the US DOT Connected Vehicle Safety Pilot Program is being demonstrated at National Harbor.
  • Trials show fuel savings with connected vehicle technology
    December 16, 2015
    American and European trials point to fuel and emissions reductions. A trial by University of California-Riverside (UC-Riverside) has shown connected vehicle technology has the potential to reduce fuel consumption (and therefore emissions) by up to 18% compared with an uninformed driver.
  • When speed compliance becomes a safety issue
    March 29, 2017
    David Crawford finds that softly, softly can be safely, safely when it comes to speed enforcement. Comedians and controversial TV presenters have long made jokes about having to watch the speedometer so closely as they pass speed camera after speed camera that they mow down bus queues. But the joke may have some factual basis according to a study by researchers from the University of Western Australia.
  • Roadside infrastructure key to in-vehicle deployment
    November 28, 2013
    The implementation of in-vehicle systems will require multilateral cooperation, as Honda’s Sue Bai explains to Colin Sowman. Vehicle manufacturers will shape the future direction of in-vehicle ITS systems, but they can’t do it on their own. So to find out what they see on the horizon, and the obstacles they face, ITS International spoke to Sue Bai, principal engineer in the Automobile Technology Research Department with Honda R&D Americas. Not only does she play an important role in Honda’s US-based ITS