Skip to main content

New German cross-industry project to develop 5G vehicle applications

A new consortium, initiated by Ericsson in Germany, aims to create an infrastructure and real application environment on a motorway test track, to carry out tests in vehicle-to-vehicle, vehicle-to-infrastructure, digitisation of the railway infrastructure and other applications using 5G technology. The 30 kilometre test track consists of several construction sections on the 30 kilometre ‘digital test field motorway’ along the A9 motorway and the high speed rail track between Nuremberg and Greding. The in
November 22, 2016 Read time: 2 mins
A new consortium, initiated by 5650 Ericsson in Germany, aims to create an infrastructure and real application environment on a motorway test track, to carry out tests in vehicle-to-vehicle, vehicle-to-infrastructure, digitisation of the railway infrastructure and other applications using 5G technology.

The 30 kilometre test track consists of several construction sections on the 30 kilometre ‘digital test field motorway’ along the A9 motorway and the high speed rail track between Nuremberg and Greding. The infrastructure is already completed in the first partial sections, meaning that live tests can begin immediately.

The project operates within an independent infrastructure and is not dependent on any commercial network, meaning that 5G prototype applications can be installed and tested regularly, in various network configurations, at any time, without restrictions. The dedicated Ericsson 5G mobile network allows live tests of real time applications, even under extreme network loads, and at very high travel speeds. Test conditions, which are hardly ever found in commercially operated live networks, can be created.

Ericsson has received permission from the German Federal Regulatory Agency to use frequencies from the 700-MHz band and will act as a network operator.

Members of the 5G Connected Mobility consortium include Ericsson, BMW Group, Deutsche Bahn, all three German mobile network operators -Deutsche Telekom, Telefónica Deutschland and Vodafone, the TU Dresden 5G Lab Germany, the Federal Highway Research Institute (BASt) and the Federal Regulatory Agency (BNetzA). The Federal Ministry of Transport and Digital Infrastructure and the Bavarian Road Construction Administration support the project.

The project aims to pool the knowledge, perspectives and recommendations gained from this partnership and further develop them with the focus on integration into international 5G standardisation activities.

Within the scope of 5G-ConnectedMobility, the consortium plans to develop use cases of associated vehicle applications, for vehicle-to-vehicle, vehicle-to-infrastructure communication, new methods of traffic information provision in real time and cross-manufacturer traffic control for automated vehicles.

For more information on companies in this article

Related Content

  • ITS in Taiwan
    February 6, 2012
    In June, ITS Taiwan will host the 11th ITS Asia Pacific Forum and Exhibition. Dr. Bert J. Lim, president of the World Economics Society and a member of the local organising committee, provides an insight to ITS development in the country. Many of the thought-provoking issues he raises could be applied equally to most countries around the world
  • Unicard achieves smart ticketing certification
    April 23, 2025
    Itso 2.1.5 includes media tailored for in-wallet digital ticketing for mass transit
  • Kapsch TrafficCom signs €7m C-ITS deal with German Autobahn
    October 13, 2023
    Contract involves supply of 1,200 ITS roadside stations to enable workzone messaging
  • Nissan to lead human driving style AV project in the UK
    February 2, 2018
    Nissan’s European Technical Centre will lead a 30-month Autonomous Vehicle trial on UK country roads, high speed roundabouts, A-Roads and motorways with live traffic and different environmental conditions. Called the HumanDrive project, it will also emulate a natural human driving style with the intention of providing an enhanced experience for its occupants. The artificial driver model that controls perception and decision making will pilot the vehicle, and will be developed using artificial intelligence