Skip to main content

Honda experiments with pedestrian and motorcycle safety

Honda has demonstrated its experimental vehicle-to-pedestrian (V2P) and vehicle-to-motorcycle (V2M) technologies, aimed at reducing the potential for collisions between automobiles and pedestrians and between automobiles and motorcycles. The vehicle-to-pedestrian (V2P) technology uses a car equipped with dedicated short range communications (DSRC) technology to detect a pedestrian with a DSRC-enabled Smartphone and provides auditory and visual warnings to both the pedestrian and drivers. According to Ho
August 29, 2013 Read time: 2 mins
1683 Honda has demonstrated its experimental vehicle-to-pedestrian (V2P) and vehicle-to-motorcycle (V2M) technologies, aimed at reducing the potential for collisions between automobiles and pedestrians and between automobiles and motorcycles.

The vehicle-to-pedestrian (V2P) technology uses a car equipped with dedicated short range communications (DSRC) technology to detect a pedestrian with a DSRC-enabled Smartphone and provides auditory and visual warnings to both the pedestrian and drivers.  According to Honda, the V2P system is effective even when the pedestrian is not easily detectable by the driver, such as when stepping off a curb from behind a parked vehicle or other traffic obstruction.

Using the DSRC communication system, Honda's vehicle-to-motorcycle (V2M) technology can determine the potential for a collision between a motorcycle and an automobile. The V2M system's advantage is its ability to sense the presence of a motorcycle even when it is obstructed from the view of nearby automobile drivers.  The system provides auditory and visual warnings to the automobile driver. This system is being researched and tested in cooperation with the 5647 University of Michigan Transportation Research Institute.

While still in the research and testing phase, these new technologies are part of a comprehensive effort being undertaken by Honda to develop leading-edge safety and driver assistive systems that can help predict and avoid traffic accidents through advanced sensing and communications technologies.

"While these are still experimental technologies, they provide a strong indication of the future potential for the kinds of advanced collision sensing and predictive technologies Honda is developing to further reduce the potential for serious accidents, injuries and even fatalities," said Jim Keller, chief engineer for Honda R&D Americas. "These V2P and V2M systems are part of Honda's broad vision for smarter and safer vehicles and roadways."

For more information on companies in this article

Related Content

  • Cyclist safety system alerts HGV drivers
    February 17, 2015
    Developed by UK vehicle safety specialists Sentinel Systems, the Bike Hotspot is designed to reduce the number of accidents involving cyclists and commercial vehicles. The system is designed to sense when a cyclist is within the blind spot of a large vehicle, a common cause for fatal accidents especially when the vehicle is manoeuvring or turning left. It comprises four of Sentinel’s safety aids including a front corner system, side scan system, a side camera and an external sounder and can be customised to
  • AVs need extreme training, says research
    May 24, 2022
    AVs will be safer if they are given 'one-in-a-million' collision risk scenarios to learn from
  • Autonomous vehicles will not prevent half of real-world crashes
    April 5, 2017
    Alan Thomas of CAVT looks at the reality behind the safety claims fuelling the drive towards autonomous vehicles
  • euroFOT study demonstrates benefits of driver assistance systems
    June 26, 2012
    Today, the euroFOT consortium published the findings of a four-year study focused on the impact of driver assistance systems in the Europe. The €22 million (US$27.5 million) European Field Operational Test (euroFOT) project which began in June 2008 and involved 28 companies and organisations, was led by Aria Etemad from Ford’s European Research Centre in Aachen, Germany. The study looked at existing technologies and their potential to both enhance safety and reduce environmental impact. euroFOT also reveale