Skip to main content

Here to lead vehicle hazard warning pilot in Finland

Mapping and navigation specialist Here has been selected by Finnish traffic agencies Finnish Transport Agency (FTA) and Trafi, the Finnish Transport Safety Agency to lead a pilot project to enable vehicles to communicate safety hazards to others on the road. Here will also work with traffic information management service company Infotripla in implementing the project, which will be the first to implement a road hazard warning messaging system as described in the Intelligent Transportation Systems (ITS)
July 1, 2015 Read time: 3 mins
Mapping and navigation specialist 7643 Here has been selected by Finnish traffic agencies Finnish Transport Agency (FTA) and Trafi, the Finnish Transport Safety Agency to lead a pilot project to enable vehicles to communicate safety hazards to others on the road.

Here will also work with traffic information management service company Infotripla in implementing the project, which will be the first to implement a road hazard warning messaging system as described in the Intelligent Transportation Systems (ITS) Directive set out by the EU. This pilot does not require the deployment of any additional roadside infrastructure, such as DSRC (dedicated short range communications) equipment, although Here is pursuing an agnostic approach with its technologies that will allow for connections with other infrastructure if required.

The project, which will start in 2016, aims s to assess the capability of current and emerging mobile network and location cloud technologies in supporting the timely communication of critical safety information, such as black ice or obstructions on the road, sudden traffic build-up or an accident.

To test the capability of the proposed technology architecture, drivers will voluntarily share notifications about safety hazards and changing road conditions initially via a smartphone. The aim is that this architecture would later also support low-latency communication, via a cloud, of data generated by a vehicle’s on-board sensors and the surrounding road infrastructure to other vehicles and smart devices on the road.

According to a recent forecast from automotive technology research firm SBD, by 2020 there will be some 33 million vehicles sold annually with built-in connectivity, generating more than 163 million terabytes of data each year via their on-board cameras and sensors. When shared across the road network using 4G/LTE and future 5G network technologies, these data could be utilised by vehicles to give them an awareness of road conditions beyond the reach of their sensors, and thus enable the driver or the vehicle itself to better plan driving manoeuvres. 5G technology raises the prospect of road hazard warnings being communicated via the cloud to relevant vehicles in a fraction of a second.
 
George Filley, who heads Here’s Digital Transportation Infrastructure program, said: “With this project, we will explore how technology within our reach today could make driving safer as cars get connected. There will be enormous amounts of data generated by a car’s on-board sensors that can be collected, analysed and shared with others on the road. An important piece of the puzzle is to figure out how to provide relevant, low-latency information to the right people at the right time, and that is a problem we believe we can solve.”
 
Alain Dunoyer, head of the Safe Car division of SBD, the automotive technology research firm, said: “The technology exists to identify road hazards with increasing levels of accuracy – it is great to see Finland partnering with a technology leader like Here to take the next step of ensuring this information reaches a broader population of drivers who will benefit from this life-saving information the most.”
 
The first phase of the pilot will focus on ensuring the technical maturity of the system. The second phase begins in the first half of 2016 on the E18 highway, the main road between Helsinki and Turku, as well as the Ring I and Ring III highways in the Greater Helsinki area, with initially up to 1,000 drivers expected to take part. The pilot phase is expected to complete by the end of 2017.

For more information on companies in this article

Related Content

  • Options abound for road weather sensing
    September 6, 2017
    Meteorological organisations invest millions in super-computers to crunch data for ever-more accurate forecasts but inherent unpredictability means that other methods of alerting drivers and road authorities to fast-changing weather and highway conditions are essential. For years, static weather sensors to measure factors such as surface water, ice or high roadway temperatures have been embedded in highways to provide such data. But that is changing.
  • NXP and eSSys To provide ITS technologies for Korean C-ITS pilot project
    July 26, 2016
    South Korea has embarked on a year-long pilot of a next-generation Cooperative Intelligent Transportation System (C-ITS) project in preparation for the 2018 Winter Olympics. Dutch secure connectivity company NXP Semiconductors and Korean automotive electronics specialist eSSys are to be technology partners in the project, which begins this month, promoted by the Korean Ministry of Land, Infrastructure and Transport. NXP will supply eSSys with its RoadLINK V2X chipset, a vehicle-to-vehicle (V2V) and v
  • Pilot scheme tests automatic emergency call system
    March 14, 2012
    Development of the European eCall system is now at a stage of national systems testing. Ertico’s project manager for the HeERO pilot scheme Andy Rooke has given ITS International the lowdown on progress towards pan-European eCall services. Live testing is now under way in the nine countries participating in the European Commission’s HeERO project – a three year pilot scheme preparing the way for full deployment of Europe’s eCall automatic emergency call system.
  • Vehicular networking architecture for local road weather services
    August 19, 2015
    The Finnish Meteorological Institute is currently testing two-way delivery of local weather data as Timo Sukuvaara explains. Road weather information is one of the key ways in which ITS can help reduce traffic accidents and fatalities – which is why the Finnish Meteorological Institute (FMI) has long provided road weather services. Now, the CoMoSeF (Cooperative Mobility Services of the Future) project has been developing communication methodologies to deliver road weather services directly to vehicles and g