Skip to main content

Here to lead vehicle hazard warning pilot in Finland

Mapping and navigation specialist Here has been selected by Finnish traffic agencies Finnish Transport Agency (FTA) and Trafi, the Finnish Transport Safety Agency to lead a pilot project to enable vehicles to communicate safety hazards to others on the road. Here will also work with traffic information management service company Infotripla in implementing the project, which will be the first to implement a road hazard warning messaging system as described in the Intelligent Transportation Systems (ITS)
July 1, 2015 Read time: 3 mins
Mapping and navigation specialist 7643 Here has been selected by Finnish traffic agencies Finnish Transport Agency (FTA) and Trafi, the Finnish Transport Safety Agency to lead a pilot project to enable vehicles to communicate safety hazards to others on the road.

Here will also work with traffic information management service company Infotripla in implementing the project, which will be the first to implement a road hazard warning messaging system as described in the Intelligent Transportation Systems (ITS) Directive set out by the EU. This pilot does not require the deployment of any additional roadside infrastructure, such as DSRC (dedicated short range communications) equipment, although Here is pursuing an agnostic approach with its technologies that will allow for connections with other infrastructure if required.

The project, which will start in 2016, aims s to assess the capability of current and emerging mobile network and location cloud technologies in supporting the timely communication of critical safety information, such as black ice or obstructions on the road, sudden traffic build-up or an accident.

To test the capability of the proposed technology architecture, drivers will voluntarily share notifications about safety hazards and changing road conditions initially via a smartphone. The aim is that this architecture would later also support low-latency communication, via a cloud, of data generated by a vehicle’s on-board sensors and the surrounding road infrastructure to other vehicles and smart devices on the road.

According to a recent forecast from automotive technology research firm SBD, by 2020 there will be some 33 million vehicles sold annually with built-in connectivity, generating more than 163 million terabytes of data each year via their on-board cameras and sensors. When shared across the road network using 4G/LTE and future 5G network technologies, these data could be utilised by vehicles to give them an awareness of road conditions beyond the reach of their sensors, and thus enable the driver or the vehicle itself to better plan driving manoeuvres. 5G technology raises the prospect of road hazard warnings being communicated via the cloud to relevant vehicles in a fraction of a second.
 
George Filley, who heads Here’s Digital Transportation Infrastructure program, said: “With this project, we will explore how technology within our reach today could make driving safer as cars get connected. There will be enormous amounts of data generated by a car’s on-board sensors that can be collected, analysed and shared with others on the road. An important piece of the puzzle is to figure out how to provide relevant, low-latency information to the right people at the right time, and that is a problem we believe we can solve.”
 
Alain Dunoyer, head of the Safe Car division of SBD, the automotive technology research firm, said: “The technology exists to identify road hazards with increasing levels of accuracy – it is great to see Finland partnering with a technology leader like Here to take the next step of ensuring this information reaches a broader population of drivers who will benefit from this life-saving information the most.”
 
The first phase of the pilot will focus on ensuring the technical maturity of the system. The second phase begins in the first half of 2016 on the E18 highway, the main road between Helsinki and Turku, as well as the Ring I and Ring III highways in the Greater Helsinki area, with initially up to 1,000 drivers expected to take part. The pilot phase is expected to complete by the end of 2017.

Related Content

  • Asfinag makes case for ITS-G5 over 5G
    March 15, 2019
    Asfinag’s Manfred Harrer and Peter Meckel talk to Jason Barnes about the organisation’s first steps towards C-ITS deployments - and why ITS-G5 will be the underpinning standard For quite a number of years, it was assumed that the connectivity required for cooperative ITS (C-ITS) applications and autonomous vehicle (AV) operations would be catered for by a bespoke communications solution/protocol. This would provide localised ad hoc communication in a manner similar to Wi-Fi, and the dedicated bandwidth/n
  • Helsinki launches electric bus pilot
    February 26, 2015
    Helsinki Region Transport (HSL) and the Technical Research Centre of Finland (VTT) are to launch an extensive joint pilot to introduce light-weight electric buses in Helsinki, where the demanding climatic conditions provide an excellent test environment. The first 12 buses, made from aluminium and developed by Linkker, will purchased by HSL and be in service by late summer. The buses will be equipped with sensors to collect data and a real-time monitoring and control system will be developed to receive info
  • Tri-nation cooperation on C-ITS Corridor
    June 20, 2016
    In the European C-ITS Corridor project, authorities from three countries are working with the automotive industry on the deployment of Cooperative (V2X) Systems. Cooperative Intelligent Transport Systems/Services (C-ITS) has the potential to improve road safety, transport efficiency and environmentally friendly mobility, as well as creating additional services and new business models. A set of international standards have been developed to provide the technical basis for the deployment of Cooperative ITS.
  • Aptiv: we need overhaul of AV nervous system
    August 20, 2019
    Autonomous vehicles are changing a lot of things: Aptiv’s Christian Schäfer suggests that we need to look again at traditional approaches to vehicle architecture to find viable options for the future