Skip to main content

C/AVs could mean cheaper roads

The safety benefits of C/AVs have long been promoted – but research suggests they should also contribute to cheaper roads. David Crawford investigates the potential benefits in infrastructure costs Building narrower freeway lanes to accommodate the enhanced route-tracking capabilities of connected and autonomous vehicles (C/AVs), running in platoon conditions, could result in cost savings of £0.5 million (€0.56 million or US$6.5 million) for every km of road length built. Such benefits could be secur
October 28, 2019 Read time: 6 mins
Building narrower freeway lanes for C/AVs, running in platoons, could result in cost savings, experts suggest © Kittiphat Abhiratvorakul | Dreamstime.com
The safety benefits of C/AVs have long been promoted – but research suggests they should also contribute to cheaper roads. David Crawford investigates the potential benefits in infrastructure costs


Building narrower freeway lanes to accommodate the enhanced route-tracking capabilities of connected and autonomous vehicles

(C/AVs), running in platoon conditions, could result in cost savings of £0.5 million (€0.56 million or US$6.5 million) for every km of road length built. Such benefits could be secured without any serious loss in the level of service available to road users as a whole.

These are among the key findings of a new study by the UK University of Southampton’s Transportation Research Group (TRG), reported at the July 2019 annual conference in Leeds of the Universities’ Transport Study Group (UTSG). It finds the current national highway cross-section standard ‘too conservative’ - particularly in terms of lane widths, which have to include an allowance for the lateral inaccuracies inherent in human-controlled driving.

There would also be important gains in safety, fuel economy and reduced CO2 emissions, according to lead researcher Hameed Jehanfo, a qualified civil engineer. Earlier studies in the field of C/AV highway provision have been based on existing design standards, or on roads built without taking into account vehicles’ close route- tracking capabilities.

The challenge was to fill this gap, by developing a specification for a new type of lane that would deliver worthwhile economies. To pave the way for this, Jehanfo took the example of a standard, 16.48m long, 2.55m wide European articulated truck as presenting “the most onerous vehicle space demands”. He then used data from wheel odometry-based 3D Lidar, inertial measurements and a GPS-based locating unit to identify the additional space allowance that would be needed to cope with the minor tracking deviations that such a vehicle would inevitably make.


Increased margin

The results showed the need for a margin of 10cm on either side of it, a figure then rounded up to generate an overall 2.80m width requirement for outer (nearside) dedicated C/AV lanes running alongside inner ones still conforming to the 3.65m standard (which already includes an allowance for the lateral inaccuracies of human-controlled driving).  

The search for a real-life illustrative case study of the cost implications identified a 22km section of the planned Lower Thames Crossing, east of London, a freeway-standard link due to open in 2027 to relieve increasing pressure on an existing upstream river crossing. Earlier feasibility studies had identified the impracticability of widening this to accommodate a growing traffic load, much of it international.

The designated route of the new crossing includes provision for a number of horizontal and vertical lane centreline alignments, weaving sections, cuttings, embankments and bridges – all of these features adequately representative of the physical characteristics of typical existing freeways. This made it ideal, Jehanfo told ITS International, to support the central aim of the study in demonstrating the beneficial cost impacts of an alternative, “less onerous” geometric design. National road operator 8101 Highways England (HE) had already expressed a strong interest in future- proofing the crossing for C/AVs from the outset.

To derive the hoped-for economies, the study then applied standard construction-industry bills of quantities techniques to calculate the materials, plant, labour and time-cost elements of contracts for building out both the standard and the C/AV-friendly versions. It used detailed engineering design drawings that HE had produced for use in a 2018 public consultation. The results appear in Table 1 (see opposite page).

 

Achieving savings

Further investigation has also made it possible to derive the prospects of achieving a 122 tonne savings in CO2 emissions over 10 years, with beneficial implications for the greenhouse gas issue. The European Union (EU) has formally identified C/AV use as a key element in governmental efforts to slow the rate of climate change, stressing its beneficial effects in delivering higher transport system efficiency.

As the Southampton research reports, US studies of platoons in which HGVs are running at short headways have shown important reductions in aerodynamic drag, a major contributor to fuel consumption, leading eventually to decreased emissions. Another beneficial effect is that platoon convoy speeds vary much less than those of normal traffic, by enabling vehicles moving at 1.4 second time gaps to move at optimal engine and fuel consumption speeds. On safety, the study goes on to identify the scope for accident savings worth £10.8 million over 10 years on the same 22km stretch of road (see Table 2, below).

At the same time, it warns of the need for more work to establish the extent to which the widespread introduction of C/AVs could introduce new safety risks. Junction design, for example, with the need to manage merging/diverging and C/AV and manual traffic flows, needs to be studied in detail. There are also plans for additional engineering work involving visibility assessments and road restraint requirements to determine the extent to which these are influenced by reduced human input.

Another issue concerns the impact, on the forecast gains, of the costs of installing and operating the necessary supporting roadside infrastructure – an issue that the TRG is dealing with via a programme of expert interviews. Already in the planning stage is the development of a simulation model, using commercially available software, to enable the assessment of the impact of the proposed C/AV road design on varying traffic levels. The hoped-for result is a decision-supporting kit.

Primary mode in US?

A study of the passenger car C/AV sector, carried out in the US within Ohio University’s Future Of Driving programme, sees driverless vehicles becoming ‘the primary mode’ of personal transport in the country by 2050, and making huge inroads into the US$160bn annual cost of traffic congestion. But, chiming with the Southampton initiative, it warns that their ability safely to share roads with human-driven traffic will need greater flexibility than current highway designs are allowing for.

Benefits that it predicts include reductions in urban traffic pressures thanks to the vehicles’ ability ‘objectively’ to pick the best routes, using modern computing techniques and accurate and up-to-date traffic flow and incident data to gain commuters in metropolitan areas nearly an hour a day in productive time. In New York’s Manhattan central business district, it suggests that a pool of 9,000 driverless cars could replace the current 13,000-strong taxi fleet (at the expense, of course, of the ousted cab drivers’ livelihoods).

In the process, the waiting time for a cab - once summoned - would fall from the typical current average of five minutes to just over half a minute; while the cost of the subsequent journey would drop to €3.125 per km (US$5 per mile).  In terms of urban land take, an automated car would be able safely to manoeuvre in and out of parking bays that were 15% narrower than those of today. But the costs of acquiring such a vehicle, the university warns. will remain a deterrent while the current price of a Google-equipped car, if it were commercially available, would be around US$150,000.

For more information on companies in this article

Related Content

  • Grey areas: who's legally responsible for C/AVs?
    October 22, 2018
    Connected and autonomous vehicles are an exciting development in the ITS sector – but amid the hype some big questions about their deployment remain unanswered, finds Ben Spencer Connected and autonomous vehicles (C/AVs) have the potential to change the way we travel - and to eliminate road fatalities. But policy makers and regulators will need to ensure user and public safety is included in future planning. The legal and insurance industries will have to catch up, too. For example, questions over who is
  • Sign language reduces human error says Clearview
    September 26, 2019
    Wrong-way warning systems and advanced queue detection can help to reduce human error. They can also cut road accidents – and therefore road deaths, says Clearview Intelligence Where were nearly 1,800 deaths on the UK’s roads in 2018 – an average of five people dying each day. The largest single cause of serious injury is crashes at junctions (accounting for 33% of incidents), while the largest single cause of death was run-off road crashes (30%) “With vehicles increasingly being designed with saf
  • New Zealand seeks comprehensive CBA framework
    October 5, 2016
    New report highlights how assessing the financial benefit of deploying ITS is an involved and evolving calculation Following a global search, five key action areas have emerged from the New Zealand Transport Agency’s recent scoping of a more comprehensive cost–benefit analysis framework for evaluating planned ITS deployments. A report commissioned from engineering consultancy Aecom New Zealand sets out the groundwork for more closely-defined assessments that will convincingly support public-sector policy ma
  • Copenhagen to showcase ITS in action at ITSWC 2018
    December 18, 2017
    As delegates head for the 2017 ITS World Congress in Montreal, we talk to Copenhagen mayor Morten Kabell about why his city is the ideal location for next year’s event. It may have been a long time coming but the ITS World Congress will be in Copenhagen in 2018 and there can be few more fitting places to host the event. By any number of metrics - interconnected transport, cycle commuting, safer streets, reduced pollution, sustainable energy and quality of life - the Danish capital has implemented what m