Skip to main content

Austria’s answer to temporary traffic problems

ASFINAG has developed a mobile traffic monitoring and guidance system through a pre-commercial procurement project. Drivers have become accustomed to roadside and gantry-mounted traffic guidance and control systems along the major roads and main motorway sections. But there are occasions when intense monitoring is required on a temporary basis along motorway sections without traffic guidance and control systems and on federal and national roads too. Examples include the monitoring of the traffic flow during
December 22, 2015 Read time: 4 mins
Precise locations are selected by those setting up the surveillance system.

ASFINAG has developed a mobile traffic monitoring and guidance system through a pre-commercial procurement project.

Drivers have become accustomed to roadside and gantry-mounted traffic guidance and control systems along the major roads and main motorway sections. But there are occasions when intense monitoring is required on a temporary basis along motorway sections without traffic guidance and control systems and on federal and national roads too. Examples include the monitoring of the traffic flow during road works or at big events.

To cater for these temporary events the Autobahnen- und Schnellstraßen-Finanzierungs-Aktiengesellschaft (750 ASFINAG), which operates Austria’s 2,200km (1,375 miles) of trunk road network, was looking for a system that can be installed easily and work independently once deployed. Major requirements were to monitor the traffic flow and passing times unattended; report traffic jams; and allow on-site information to road users.

In order to identify a solution, ASFINAG conducted a pre-commercial procurement (PCP) project in cooperation with the Austrian Ministry for Transport, Innovation and Technology.

An essential element of the PCP project is for multiple competing companies to develop different, innovative solutions to the given problem. The process has multiple consecutive phases starting with the call for proposals followed by feasibility studies and then prototype development. At the end of each phase there is a selection / reduction of bidders remaining in the competition.
In this case seven project proposals were submitted in the first phase, out of which five were chosen for a feasibility study.  Of these five consortiums, two (‘Move Best’ and ‘Movebag’) were selected to develop a prototype for testing on ASFINAG’s network.

Move Best has been developed by EBE Solutions, the Austrian Institute of Technology and Verkehrspuls – Technisches Büro für Verkehrsplanung, while Prisma solutions, 129 Swarco Futurit, TIM traffic information and management, Verkehrs- und Kommunikationstechnik and Wieser Verkehrssicherheit joined forces to develop Movebag.

Both prototypes include a combination of mobile, energy-efficient and dynamically controllable components for the collection, transmission and display of traffic data. Two people can easily erect the mobile sensors (radar, Bluetooth and CCTV) on-site to collect information such as vehicle numbers, speed and passing times as well as video imaging.

With both contenders, the mobile traffic management system sends the raw data to either the existing permanent or a temporary traffic control centre for interpretation and analyses using a number of defined algorithms. All data is available online and can be viewed as a map in the control centre. Based on the traffic situation, the operator can remotely configure the information on the mobile display boards to inform road users about the current traffic situation and possible alternative routes.

Both systems have a modular concept and can be transported in sections using an ASFINAG service vehicle. Once deployed the battery-powered systems can operate for up to a week without recharging.

When a bigger traffic disruption or obstruction is planned or reported, the operation team dispatch the system to the relevant locations to set up the mobile display boards and erect the sensors. The precise location is decided by the responsible employee on-site according to the configuration of the road and any obstacles such as roadworks.

Once in operation the real-time data collected by the sensors, including the exact location of all units, is transmitted to the central system via GSM (global system for mobile communications) or UTMS (universal mobile telecommunications system).
The first test results were very positive and further trials in live operation are being assessed. The highlight of the tests was the deployment of the mobile traffic management system on the roads leading to the Red Bull Ring during the 2015 Formula 1 Grand Prix in Austria. Based on the results, the procurement of two additional systems is envisaged.

The phased realisation of the pilot project guaranteed the systems exactly met the requirements while allowing both competition and quality assurance, and minimising project risks.

For more information on companies in this article

Related Content

  • Volvo Group studies potential to test electric roads in a city
    May 21, 2014
    The Volvo Group is now taking the next step in the development of sustainable transport solutions. In collaboration with the Swedish Transport Administration, the Volvo Group will study the potential for building electric roads, where city buses can be charged from electricity in the road at the same time as the bus is in operation. The benefit is quieter and more climate-smart public transport. A 300- to 500-metre electric road may be built for test operations in central Gothenburg during 2015. The tech
  • Communications hold key to expanding ITS wireless network expansion
    December 21, 2017
    Wireless transmission of data and control information is making smarter traffic management easier and cheaper to install. It has long been known that connectivity is the key to improving traffic management and many cost-benefit studies prove that investment in new technology can be justified in terms of reduced congestion, shorter travel times, improved safety and air quality. However, many authorities’ cap-ex budgets only cover urgent matters, not improvements, making it difficult, if not impossible to
  • Communications hold key to expanding ITS wireless network expansion
    December 21, 2017
    Wireless transmission of data and control information is making smarter traffic management easier and cheaper to install. It has long been known that connectivity is the key to improving traffic management and many cost-benefit studies prove that investment in new technology can be justified in terms of reduced congestion, shorter travel times, improved safety and air quality. However, many authorities’ cap-ex budgets only cover urgent matters, not improvements, making it difficult, if not impossible to
  • Centralised traffic control, managing changing traffic demands
    January 23, 2012
    Paul van Koningsbruggen and Dave Marples of Technolution BV describe, using a national example from the Netherlands, how smart add-ons to traffic control centres combine to increase cross-centre capabilities and cost-efficiency. Increasingly, traffic management is becoming the natural partner of the civil engineer, improving flows over existing infrastructure to deliver an alternative to laying more blacktop. As in any emerging market, the first steps towards mature traffic management have not necessarily r