Skip to main content

Austria’s answer to temporary traffic problems

ASFINAG has developed a mobile traffic monitoring and guidance system through a pre-commercial procurement project. Drivers have become accustomed to roadside and gantry-mounted traffic guidance and control systems along the major roads and main motorway sections. But there are occasions when intense monitoring is required on a temporary basis along motorway sections without traffic guidance and control systems and on federal and national roads too. Examples include the monitoring of the traffic flow during
December 22, 2015 Read time: 4 mins
Precise locations are selected by those setting up the surveillance system.

ASFINAG has developed a mobile traffic monitoring and guidance system through a pre-commercial procurement project.

Drivers have become accustomed to roadside and gantry-mounted traffic guidance and control systems along the major roads and main motorway sections. But there are occasions when intense monitoring is required on a temporary basis along motorway sections without traffic guidance and control systems and on federal and national roads too. Examples include the monitoring of the traffic flow during road works or at big events.

To cater for these temporary events the Autobahnen- und Schnellstraßen-Finanzierungs-Aktiengesellschaft (750 ASFINAG), which operates Austria’s 2,200km (1,375 miles) of trunk road network, was looking for a system that can be installed easily and work independently once deployed. Major requirements were to monitor the traffic flow and passing times unattended; report traffic jams; and allow on-site information to road users.

In order to identify a solution, ASFINAG conducted a pre-commercial procurement (PCP) project in cooperation with the Austrian Ministry for Transport, Innovation and Technology.

An essential element of the PCP project is for multiple competing companies to develop different, innovative solutions to the given problem. The process has multiple consecutive phases starting with the call for proposals followed by feasibility studies and then prototype development. At the end of each phase there is a selection / reduction of bidders remaining in the competition.
In this case seven project proposals were submitted in the first phase, out of which five were chosen for a feasibility study.  Of these five consortiums, two (‘Move Best’ and ‘Movebag’) were selected to develop a prototype for testing on ASFINAG’s network.

Move Best has been developed by EBE Solutions, the Austrian Institute of Technology and Verkehrspuls – Technisches Büro für Verkehrsplanung, while Prisma solutions, 129 Swarco Futurit, TIM traffic information and management, Verkehrs- und Kommunikationstechnik and Wieser Verkehrssicherheit joined forces to develop Movebag.

Both prototypes include a combination of mobile, energy-efficient and dynamically controllable components for the collection, transmission and display of traffic data. Two people can easily erect the mobile sensors (radar, Bluetooth and CCTV) on-site to collect information such as vehicle numbers, speed and passing times as well as video imaging.

With both contenders, the mobile traffic management system sends the raw data to either the existing permanent or a temporary traffic control centre for interpretation and analyses using a number of defined algorithms. All data is available online and can be viewed as a map in the control centre. Based on the traffic situation, the operator can remotely configure the information on the mobile display boards to inform road users about the current traffic situation and possible alternative routes.

Both systems have a modular concept and can be transported in sections using an ASFINAG service vehicle. Once deployed the battery-powered systems can operate for up to a week without recharging.

When a bigger traffic disruption or obstruction is planned or reported, the operation team dispatch the system to the relevant locations to set up the mobile display boards and erect the sensors. The precise location is decided by the responsible employee on-site according to the configuration of the road and any obstacles such as roadworks.

Once in operation the real-time data collected by the sensors, including the exact location of all units, is transmitted to the central system via GSM (global system for mobile communications) or UTMS (universal mobile telecommunications system).
The first test results were very positive and further trials in live operation are being assessed. The highlight of the tests was the deployment of the mobile traffic management system on the roads leading to the Red Bull Ring during the 2015 Formula 1 Grand Prix in Austria. Based on the results, the procurement of two additional systems is envisaged.

The phased realisation of the pilot project guaranteed the systems exactly met the requirements while allowing both competition and quality assurance, and minimising project risks.

Related Content

  • Proposed system to take guesswork out of choosing a freeway lane
    March 17, 2014
    A fledgling advanced lane management assist system can take the guesswork out of selecting the right lane on a congested freeway, as its inventor Robert Gordon explains. As drivers we’ve all done it and control room staff see it all the time – motorists on congested freeways switching into what they perceive is a faster lane, only to come to a halt a few moments later and watch vehicles in the other lanes continue to move past. Now, by re-analysing readily available data in an advanced lane management as
  • Developments in signal head lens technology
    February 3, 2012
    Heads and tails Leading manufacturers of traffic signal systems discuss developments in signal head technology as well as some of the legacy issues which affect future deployments Transparent model of Dambach's ACTROS.line technology, showing the bus electronics in the signal head Cowls could be superseded by the greater use of lens technology
  • Kapsch looks to the future
    December 16, 2014
    Colin Sowman reports from a two-day meeting where industry leaders, academics and political advisers presented their thoughts on the future of mobility. Most governments do not dare to introduce tolling systems… they are too frightened.” So said Georg Kapsch in his capacity of chief operating officer of Kapsch TrafficCom, during a forward-looking press event at the company’s headquarters in Vienna.
  • Transmax trials emergency vehicle ‘green wave’
    December 6, 2013
    Existing equipment used in Australian emergency vehicle ‘green wave’ trial. Despite the lights and sirens, accidents between the motoring public and emergency vehicles on their way to/from the scene of an incident are relatively frequent. Figures from various sources indicate that road accidents are the second most frequent cause of death for on-duty fire fighter fatalities and that more than 90% of ambulance and fire engine accidents occur when the lights are on and the sirens wailing. Other studies indica