Skip to main content

Austria’s answer to temporary traffic problems

ASFINAG has developed a mobile traffic monitoring and guidance system through a pre-commercial procurement project. Drivers have become accustomed to roadside and gantry-mounted traffic guidance and control systems along the major roads and main motorway sections. But there are occasions when intense monitoring is required on a temporary basis along motorway sections without traffic guidance and control systems and on federal and national roads too. Examples include the monitoring of the traffic flow during
December 22, 2015 Read time: 4 mins
Precise locations are selected by those setting up the surveillance system.

ASFINAG has developed a mobile traffic monitoring and guidance system through a pre-commercial procurement project.

Drivers have become accustomed to roadside and gantry-mounted traffic guidance and control systems along the major roads and main motorway sections. But there are occasions when intense monitoring is required on a temporary basis along motorway sections without traffic guidance and control systems and on federal and national roads too. Examples include the monitoring of the traffic flow during road works or at big events.

To cater for these temporary events the Autobahnen- und Schnellstraßen-Finanzierungs-Aktiengesellschaft (750 ASFINAG), which operates Austria’s 2,200km (1,375 miles) of trunk road network, was looking for a system that can be installed easily and work independently once deployed. Major requirements were to monitor the traffic flow and passing times unattended; report traffic jams; and allow on-site information to road users.

In order to identify a solution, ASFINAG conducted a pre-commercial procurement (PCP) project in cooperation with the Austrian Ministry for Transport, Innovation and Technology.

An essential element of the PCP project is for multiple competing companies to develop different, innovative solutions to the given problem. The process has multiple consecutive phases starting with the call for proposals followed by feasibility studies and then prototype development. At the end of each phase there is a selection / reduction of bidders remaining in the competition.
In this case seven project proposals were submitted in the first phase, out of which five were chosen for a feasibility study.  Of these five consortiums, two (‘Move Best’ and ‘Movebag’) were selected to develop a prototype for testing on ASFINAG’s network.

Move Best has been developed by EBE Solutions, the Austrian Institute of Technology and Verkehrspuls – Technisches Büro für Verkehrsplanung, while Prisma solutions, 129 Swarco Futurit, TIM traffic information and management, Verkehrs- und Kommunikationstechnik and Wieser Verkehrssicherheit joined forces to develop Movebag.

Both prototypes include a combination of mobile, energy-efficient and dynamically controllable components for the collection, transmission and display of traffic data. Two people can easily erect the mobile sensors (radar, Bluetooth and CCTV) on-site to collect information such as vehicle numbers, speed and passing times as well as video imaging.

With both contenders, the mobile traffic management system sends the raw data to either the existing permanent or a temporary traffic control centre for interpretation and analyses using a number of defined algorithms. All data is available online and can be viewed as a map in the control centre. Based on the traffic situation, the operator can remotely configure the information on the mobile display boards to inform road users about the current traffic situation and possible alternative routes.

Both systems have a modular concept and can be transported in sections using an ASFINAG service vehicle. Once deployed the battery-powered systems can operate for up to a week without recharging.

When a bigger traffic disruption or obstruction is planned or reported, the operation team dispatch the system to the relevant locations to set up the mobile display boards and erect the sensors. The precise location is decided by the responsible employee on-site according to the configuration of the road and any obstacles such as roadworks.

Once in operation the real-time data collected by the sensors, including the exact location of all units, is transmitted to the central system via GSM (global system for mobile communications) or UTMS (universal mobile telecommunications system).
The first test results were very positive and further trials in live operation are being assessed. The highlight of the tests was the deployment of the mobile traffic management system on the roads leading to the Red Bull Ring during the 2015 Formula 1 Grand Prix in Austria. Based on the results, the procurement of two additional systems is envisaged.

The phased realisation of the pilot project guaranteed the systems exactly met the requirements while allowing both competition and quality assurance, and minimising project risks.

Related Content

  • January 30, 2012
    Toll performance exceeds expectations, improves travel times
    Jean Harito, Attica Tollway Operations Authority and Steve Morello, Egis Projects describe how looking to exceed contractual obligations makes good operational and business sense. The Attica Tollway is a modern, 65km, access-controlled urban motorway with three lanes in each direction. It constitutes the ring road around the extensive metropolitan area of the Greek capital, Athens, and forms the backbone of the entire road network in the Attica region. By ensuring freeflow operating conditions, the Attica T
  • July 24, 2012
    Driving forward cooperative intersection safety applications
    Gregory Davis, FHWA, John Harding, NHTSA, and Mike Schagrin, ITS Joint Program Office (RITA) chart the course for cooperative intersection safety applications being pursued as part of the IntelliDrive programme. Crashes at intersections accounted for 8,703 highway fatalities in the US in 2008. Research and development is moving forward on IntelliDriveSM safety applications designed to help drivers avoid intersection accidents. These new safety systems could substantially drive down the highway death and inj
  • March 19, 2014
    Asking drivers what information they need: radical but effective
    When Texas A&M Transportation Institute was asked to devise a temporary traveller information system for work zones, it started by asking drivers what they need. Robert Brydia explains the thinking, implementation and results. US Interstate 35 (I-35) runs roughly north–south originating in Laredo, Texas and ends 1,500 miles away in Duluth, Minnesota having passed through Oklahoma, Kansas, Missouri and Iowa. Within Texas the I-35 splits into I-35E and I-35W passing through Dallas and Fort Worth respectiv
  • February 3, 2012
    Detection analysis technology successfully predicts traffic flows
    David Crawford investigates new detection analysis technology from IBM. Locations on both the East and West Coasts of the US are scheduled for early deployments of IBM's new Traffic Prediction Tool (TPT) statistical analysis model for the fine-time resolution and near-term prediction of road flow conditions. Developed by IBM's Watson Research Laboratories, TPT is designed to analyse data from the the key detection indicators - average vehicle volumes and speeds passing a location in a given time interval -