Skip to main content

Waymo redesigns fifth generation hardware sensor suite

Waymo has redesigned its fifth-generation hardware sensor suite with the aim of enabling the scaled deployment of Waymo Driver autonomous vehicles (AVs).
By Ben Spencer March 16, 2020 Read time: 2 mins
Waymo's self-driving Jaguar I-Pace electric SUV 1 (Source: Waymo)

In a blog post, Satish Jeyachandran, head of hardware at Waymo, says the new 360 Lidar system provides a bird's-eye view of the cars, cyclists and pedestrians surrounding the vehicle. It allows Waymo Driver to navigate the complexities of city driving by distinguishing the opening of a car door a city block away while also allowing its trucks to spot debris hundreds of metres ahead on the highway, he adds.
 
Perimeter Lidars are now placed at four points around the sides of the vehicle to help it navigate tight gaps in city traffic and cover potential blind spots on hilly terrain.
 
According to Jeyachandran, long range cameras and a 360 vision system identify pedestrians and stop signs greater than 500m away.
 
Additionally, a perimeter vision system is expected to work in conjunction with its perimeter Lidars to give Waymo Driver another perspective of objects close to the vehicle.
 
“For example, while our perimeter Lidars detect obstacles directly in front of the vehicle with precision, our perimeter cameras provide our machine learning algorithms additional details to reliably identify objects, providing more context to the traffic scene,” Jeyachandran explains.
 
He claims that a peripheral vision system allows Waymo to ‘peek’ around a truck driving in front to determine whether it is safe to overtake or wait.
 
Waymo has also redesigned the architecture, outputs and signal processing capabilities of the hardware sensor suite to create an “imaging radar system for self-driving”.
 
“Our next-generation radar can also see objects at great distances, including detecting a motorcyclist from hundreds of metres away,” he continues. “Like with our other long-range sensors, being able to accurately detect objects at greater distances gives us a longer reaction time to make a more comfortable experience for our riders.”
 
The company has integrated its new generation of sensors on its Jaguar I-PACE vehicle.
 
“With the first of these new vehicles, we’ve completed comprehensive module-level and system-level tests to ensure our next-generation hardware can withstand whatever the roads throw at it - from stormy weather and salted roads, to extreme heat and dirt storms,” Jeyachandran concludes.

 

Related Content

  • November 27, 2013
    Advanced Driver Assistance Systems: a solution or another problem?
    Do Advanced Driver Assistance Systems represent a positive step forward for safety, or something of a safety risk? Jason Barnes discusses the issue with leading industry figures. Advanced Driver Assistance Systems (ADAS) are already common. Anti-lock brakes or electronic stability control are well understood and are either fitted as standard or frequently requested by new vehicle buyers. More advanced ADAS features are appearing on many top-end vehicles and the trickle-down has already started. Adaptive
  • January 11, 2013
    In-vehicle vision-based systems and autonomous vehicles
    The Artificial Vision and Intelligent Systems Laboratory (VisLab) of Italy’s Parma University has built itself a fine pedigree in basic and applied research which has developed machine vision algorithms and intelligent systems for the automotive field. In 1998, a VisLab-equipped Lancia Thema named ‘Argo’ travelled along the famous Mille Miglia race route and completed 98 per cent of it autonomously using then-current technology. In 2005, VisLab provided the vision element of the Terramax, a collaborative un
  • February 28, 2013
    Flir takeover of Traficon and the role of thermal imaging
    Andy Teich, president of commercial systems at Flir, discusses the growing role of thermal technology in ITS and his company’s latest high-profile acquisition with Jason Barnes. Andy Teich, Flir’s president of commercial systems, doesn’t want to talk about infrared (IR). Instead, he’d prefer, he says, to discuss ‘thermal technology’. It is, he explains, to differentiate between the imaging technologies which his company specialises in and the LED illumination of IR cameras, an altogether different beast. Fl
  • December 3, 2018
    Panasonic in Colorado: Rocky mountain way
    Panasonic is at the heart of a C-V2X project which began last year in Colorado. The company’s smart mobility boss Chris Armstrong tells Adam Hill how it is working out Colorado needs traffic and transport solutions – and fast. The US state’s population has grown 50% in the last 20 years and another 50% hike is predicted in the next 20. It also spends more than $13 billion in roadway crash costs each year. In 2015, 546 people died in traffic-related crashes, and more than 3,000 were seriously injured.