Skip to main content

UK university to develop asset management tool for light railways and tramways

Experts at the University of Huddersfield have won more than US$208,000 funding to develop a software-based asset management tool that will enable light railway operators to calculate the most appropriate rail wear limits for their system. This would mean longer intervals between maintenance and replacement, reducing disruption to passengers and costs to the operators, while maintaining safety levels.
December 22, 2015 Read time: 2 mins

Experts at the University of Huddersfield have won more than US$208,000 funding to develop a software-based asset management tool that will enable light railway operators to calculate the most appropriate rail wear limits for their system.

This would mean longer intervals between maintenance and replacement, reducing disruption to passengers and costs to the operators, while maintaining safety levels.

The research is being carried out at the university’s Institute of Railway Research, which has developed expertise in computer modelling of the interface between rail vehicles and track.

This will play a major part in the new project and there is also on-site collaboration with some of the UK’s busiest tramway systems.

The project is funded through UKTram’s Low Impact Light Rail scheme, supported by Innovate UK’s SBRI programme. The project is headed by Dr Adam Bevan, who is the IRR’s Head of Enterprise. It includes Professor Jay Jaiswal, a metallurgist with a speciality in rail steels.

The project, to develop a software tool that will enable tramway and light rail operators to develop more realistic maintenance schedules, was one of fifteen projects awarded funding for a feasibility study. Following an assessment of the outcomes of this work, funding was awarded to progress to the demonstrator phase and trial the developed tools in real-life situations. This phase is due for completion in October 2016 and will deliver a software-based asset management tool and guidance document based on the operating conditions of the specific network.  It will enable infrastructure managers to arrive at the optimum rail wear limits and to select the appropriate grades of rail steel for their systems.

The developed tool will be made available to UKTram members and the University’s Institute of Railway Research will provide technical consultancy to customise it for the specific conditions of the network.  The software and supporting technical consultancy will also be offered on a commercial basis to the large numbers of tramways and light railways around the world.

Related Content

  • Car makers test next generation connected car communications technology
    July 11, 2016
    Audi, Deutsche Telekom, Huawei, Toyota Motor Europe and other car manufacturers are currently carrying out technical field trials on testing LTE-Vehicular (LTE-V), which is seen as a potential enabler for road safety applications and traffic control services as well as emerging automated driving use. The tests, which are being carried out on the A9 motorway in Germany, with the objective of assessing the performance of LTE-V for connected vehicle communications during its standardisation process. LTE
  • Traffic congestion costs UK business millions each year
    November 29, 2016
    Traffic congestion is costing UK businesses approximately US$957 million (£767 million) a year in lost productivity, according to research conducted by TomTom. The TomTom Traffic Index has found traffic across the UK’s 25 most congested cities and towns increases the time each vehicle spends on the road by an average of 127 hours a year. And the situation seems to be getting worse. An average journey in 2015 took 29 per cent longer than it would in free-flowing conditions, up from a 25 per cent delay
  • Transmax trials emergency vehicle ‘green wave’
    December 6, 2013
    Existing equipment used in Australian emergency vehicle ‘green wave’ trial. Despite the lights and sirens, accidents between the motoring public and emergency vehicles on their way to/from the scene of an incident are relatively frequent. Figures from various sources indicate that road accidents are the second most frequent cause of death for on-duty fire fighter fatalities and that more than 90% of ambulance and fire engine accidents occur when the lights are on and the sirens wailing. Other studies indica
  • Centralised traffic control, managing changing traffic demands
    January 23, 2012
    Paul van Koningsbruggen and Dave Marples of Technolution BV describe, using a national example from the Netherlands, how smart add-ons to traffic control centres combine to increase cross-centre capabilities and cost-efficiency. Increasingly, traffic management is becoming the natural partner of the civil engineer, improving flows over existing infrastructure to deliver an alternative to laying more blacktop. As in any emerging market, the first steps towards mature traffic management have not necessarily r