Skip to main content

UK university to develop asset management tool for light railways and tramways

Experts at the University of Huddersfield have won more than US$208,000 funding to develop a software-based asset management tool that will enable light railway operators to calculate the most appropriate rail wear limits for their system. This would mean longer intervals between maintenance and replacement, reducing disruption to passengers and costs to the operators, while maintaining safety levels.
December 22, 2015 Read time: 2 mins

Experts at the University of Huddersfield have won more than US$208,000 funding to develop a software-based asset management tool that will enable light railway operators to calculate the most appropriate rail wear limits for their system.

This would mean longer intervals between maintenance and replacement, reducing disruption to passengers and costs to the operators, while maintaining safety levels.

The research is being carried out at the university’s Institute of Railway Research, which has developed expertise in computer modelling of the interface between rail vehicles and track.

This will play a major part in the new project and there is also on-site collaboration with some of the UK’s busiest tramway systems.

The project is funded through UKTram’s Low Impact Light Rail scheme, supported by Innovate UK’s SBRI programme. The project is headed by Dr Adam Bevan, who is the IRR’s Head of Enterprise. It includes Professor Jay Jaiswal, a metallurgist with a speciality in rail steels.

The project, to develop a software tool that will enable tramway and light rail operators to develop more realistic maintenance schedules, was one of fifteen projects awarded funding for a feasibility study. Following an assessment of the outcomes of this work, funding was awarded to progress to the demonstrator phase and trial the developed tools in real-life situations. This phase is due for completion in October 2016 and will deliver a software-based asset management tool and guidance document based on the operating conditions of the specific network.  It will enable infrastructure managers to arrive at the optimum rail wear limits and to select the appropriate grades of rail steel for their systems.

The developed tool will be made available to UKTram members and the University’s Institute of Railway Research will provide technical consultancy to customise it for the specific conditions of the network.  The software and supporting technical consultancy will also be offered on a commercial basis to the large numbers of tramways and light railways around the world.

Related Content

  • Dubai metro - the world's longest automated rail system
    July 31, 2012
    David Crawford reviews the recent opening of Dubai's Red Line. The US$7.6bn Dubai Metro, the Phase I Red Line of which started partial operation in September 2009, will be the world's longest driverless rail system on its planned completion in 2011. With a total length of some 75km, it will then overtake the 68.7km Vancouver SkyTrain and be able to carry over 1.2 million passengers on a typical day.
  • First UK public trials of self-driving vehicles
    October 13, 2016
    The Transport Systems Catapult (TSC) in Milton Keynes has successfully tested its self-driving vehicles in public for the first time in the UK. The demonstration of a UK developed autonomous driving system marked the conclusion of the Lutz Pathfinder Project, which has been developing the technology for the past 18 months. The project team has been running a number of exercises in preparation for the demonstration as part of the Lutz Pathfinder project, including virtual mapping of Milton Keynes, assess
  • Vehicle identification systems aid dynamic bus operations
    April 24, 2013
    David Crawford looks at a global trend towards more efficiency in less space As buses gain increased profile in the public transport mix needed for modal shift, attention is turning towards improving terminal layouts for more efficient handling of services and passengers. Locations, too, tend to be in central areas of cities, where sites are restricted and land values high. Enter the dynamic bus station, which uses modern vehicle identification systems to optimise space use and streamline service operation
  • GE, Ford, University of Michigan working to extend EV battery life
    August 6, 2012
    GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.