Skip to main content

UK university to develop asset management tool for light railways and tramways

Experts at the University of Huddersfield have won more than US$208,000 funding to develop a software-based asset management tool that will enable light railway operators to calculate the most appropriate rail wear limits for their system. This would mean longer intervals between maintenance and replacement, reducing disruption to passengers and costs to the operators, while maintaining safety levels.
December 22, 2015 Read time: 2 mins

Experts at the University of Huddersfield have won more than US$208,000 funding to develop a software-based asset management tool that will enable light railway operators to calculate the most appropriate rail wear limits for their system.

This would mean longer intervals between maintenance and replacement, reducing disruption to passengers and costs to the operators, while maintaining safety levels.

The research is being carried out at the university’s Institute of Railway Research, which has developed expertise in computer modelling of the interface between rail vehicles and track.

This will play a major part in the new project and there is also on-site collaboration with some of the UK’s busiest tramway systems.

The project is funded through UKTram’s Low Impact Light Rail scheme, supported by Innovate UK’s SBRI programme. The project is headed by Dr Adam Bevan, who is the IRR’s Head of Enterprise. It includes Professor Jay Jaiswal, a metallurgist with a speciality in rail steels.

The project, to develop a software tool that will enable tramway and light rail operators to develop more realistic maintenance schedules, was one of fifteen projects awarded funding for a feasibility study. Following an assessment of the outcomes of this work, funding was awarded to progress to the demonstrator phase and trial the developed tools in real-life situations. This phase is due for completion in October 2016 and will deliver a software-based asset management tool and guidance document based on the operating conditions of the specific network.  It will enable infrastructure managers to arrive at the optimum rail wear limits and to select the appropriate grades of rail steel for their systems.

The developed tool will be made available to UKTram members and the University’s Institute of Railway Research will provide technical consultancy to customise it for the specific conditions of the network.  The software and supporting technical consultancy will also be offered on a commercial basis to the large numbers of tramways and light railways around the world.

Related Content

  • Ford develops heart rate monitoring seat
    May 16, 2012
    Ford engineers have developed a car seat that can monitor a driver's heartbeat, opening the door to a wealth of health, convenience and even life-saving potential. A joint project undertaken by experts from Ford's European Research and Innovation Centre in Aachen, Germany and Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, the seat uses six special embedded sensors to detect electrical impulses generated by the heart.
  • Drivewyze & One.network start Oregon safety project
    March 29, 2024
    Umatilla County deal will give truck drivers in-cab, real-time road closure alerts
  • Siemens tops ABI Research’s traffic management systems vendor ranking
    February 5, 2015
    Siemens ranks first in ABI Research’s latest competitive assessment, Smart Transportations Market Research, which evaluates traffic management systems hardware, software, solution, and data providers. It performs strongly on innovation criteria across the board, with an extensive portfolio for traffic monitoring and video surveillance, operations and management centres, modelling and planning, intelligent traffic lights, digital signage, and dynamic tolling. It also scores high on implementation criteria
  • Utah Department of Transportation: How we’re using traffic analytics software
    February 4, 2025
    Our use of Iteris ClearGuide lets our traffic operations engineers interpret critical probe traffic data without the need for statisticians and software developers