Skip to main content

Toyota developing new map generation system

To aid the safe implementation of automated driving, Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.
December 24, 2015 Read time: 3 mins

To aid the safe implementation of automated driving, 1686 Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.

Toyota's new system uses camera-equipped production vehicles to gather road images and vehicle positional information. This information is sent to data centres, where it is automatically pieced together, corrected and updated to generate high precision road maps that cover a wide area.

An understanding of road layouts and traffic rules (including speed limits and various road signs) is essential for the successful implementation of automated driving technologies. Additionally, high precision measurement of positional information requires the collection of information on dividing lines, curbs, and other road characteristics.

Until now, map data for automated driving purposes has been generated using specially-built vehicles equipped with three-dimensional laser scanners. The vehicles are driven through urban areas and on highways and data are collected and manually edited to incorporate information such as dividing lines and road signs. Due to the infrequent nature of data collection, maps generated in this manner are seldom updated, limiting their usefulness. Additionally, this represents a relatively cost-intensive method of gathering data, due to the need to manually input specific types of data.

Toyota's newly developed system uses automated cloud-based spatial information generation technology, developed by Toyota Central R&D Labs, to generate high precision road image data from the databanks and GPS devices of designated user vehicles. While a system relying on cameras and GPS in this manner has a higher probability of error than a system using three-dimensional laser scanners, positional errors can be mitigated using image matching technologies that integrate and correct road image data collected from multiple vehicles, as well as high precision trajectory estimation technologies. This restricts the system's margin error to a maximum of 5 cm on straight roads. By utilising production vehicles and existing infrastructure to collect information, this data can be updated in real time. Furthermore, the system can be implemented and scaled up at a relatively low cost.

To support the spread of automated driving technologies, Toyota plans to include this system as a core element in automated driving vehicles that will be made available in production vehicles by around 2020. While initial use of the system is expected to be limited to expressways, future development goals include expanding functionality to cover ordinary roads and assist in hazard avoidance. Toyota will also seek to collaborate with mapmakers, with the goal of encouraging the use of high precision map data in services offered by both the public and private sectors.

For more information on companies in this article

Related Content

  • Changing driving conditions need ongoing driver training
    January 23, 2012
    Trevor Ellis, chairman of the ITS UK Enforcement Interest Group, considers the role of ongoing driver training in increasing compliance. It is over 30 years since I passed my driving test. The world was quite a different place then, in that there were only half the vehicles there are now on the UK's roads, mobile phones did not really exist and (in the UK at least) the vast majority of us drove cars which by today's standards exhibited dreadful dynamic stability and were woefully underpowered.
  • Axis aids incident detection on French viaduct
    October 31, 2016
    France’s first AID system has halved attendance time on the Calix Viaduct. TheCentre for Traffic Engineering and Management (CIGT) at Caen in northern France manages 367km of the national network in the Manche/Calvados district including the 1.2km long, 15-span Calix Viaduct across the Canal de Caen à la Mer.
  • Utah Department of Transportation: How we’re using traffic analytics software
    February 4, 2025
    Our use of Iteris ClearGuide lets our traffic operations engineers interpret critical probe traffic data without the need for statisticians and software developers
  • ITS in the Baltic States: on the rise
    August 12, 2020
    In the Baltic states, on north-east Europe’s border with Russia, the ITS sector is on the verge of big growth, finds Eugene Gerden - but more