Skip to main content

Toyota developing new map generation system

To aid the safe implementation of automated driving, Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.
December 24, 2015 Read time: 3 mins

To aid the safe implementation of automated driving, 1686 Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.

Toyota's new system uses camera-equipped production vehicles to gather road images and vehicle positional information. This information is sent to data centres, where it is automatically pieced together, corrected and updated to generate high precision road maps that cover a wide area.

An understanding of road layouts and traffic rules (including speed limits and various road signs) is essential for the successful implementation of automated driving technologies. Additionally, high precision measurement of positional information requires the collection of information on dividing lines, curbs, and other road characteristics.

Until now, map data for automated driving purposes has been generated using specially-built vehicles equipped with three-dimensional laser scanners. The vehicles are driven through urban areas and on highways and data are collected and manually edited to incorporate information such as dividing lines and road signs. Due to the infrequent nature of data collection, maps generated in this manner are seldom updated, limiting their usefulness. Additionally, this represents a relatively cost-intensive method of gathering data, due to the need to manually input specific types of data.

Toyota's newly developed system uses automated cloud-based spatial information generation technology, developed by Toyota Central R&D Labs, to generate high precision road image data from the databanks and GPS devices of designated user vehicles. While a system relying on cameras and GPS in this manner has a higher probability of error than a system using three-dimensional laser scanners, positional errors can be mitigated using image matching technologies that integrate and correct road image data collected from multiple vehicles, as well as high precision trajectory estimation technologies. This restricts the system's margin error to a maximum of 5 cm on straight roads. By utilising production vehicles and existing infrastructure to collect information, this data can be updated in real time. Furthermore, the system can be implemented and scaled up at a relatively low cost.

To support the spread of automated driving technologies, Toyota plans to include this system as a core element in automated driving vehicles that will be made available in production vehicles by around 2020. While initial use of the system is expected to be limited to expressways, future development goals include expanding functionality to cover ordinary roads and assist in hazard avoidance. Toyota will also seek to collaborate with mapmakers, with the goal of encouraging the use of high precision map data in services offered by both the public and private sectors.

For more information on companies in this article

Related Content

  • Driverless Russia: Look – no hands!
    March 26, 2020
    Russia is betting on the importance of driverless cars as the country’s transport system develops in the years to come.
  • Microsoft teams up with IAV to develop traffic safety technology
    January 6, 2016
    IAV and Microsoft are teaming up to develop a ‘connected highly automated driving’ (CHAD) vehicle, the companies announced at CES 2016. The vehicle will connect with Microsoft’s Azure and Windows 10 to prevent pedestrian accidents. In addition they claim the new technology will also increase driving comfort. This new vehicle-to-X (V2X) communication connectivity approach uses data from the vehicle’s surroundings to improve smart service for convenience and enhance safety by anticipating and mitigating po
  • Next Generation 911, updating the US 911 emergency system
    February 1, 2012
    Continuing developments in telecommunications and public expectation have left the US's legacy, analogue 911 emergency call system trailing. Linda D. Dodge, Public Safety Program Manager for the ITS programme in USDOT's Research and Innovative Technology Administration, the sponsor of the Next Generation 911 initiative, writes about efforts towards updating
  • User-based insurance joins the battle for big data
    November 10, 2015
    User-based insurance is blazing a trail others would like to follow and is also discovering the challenges. The ITS sector needs to keep a very careful eye on the automotive industry: “There’s a war going on in the connected car space creating richer datasets than we ever imagined possible” says Paul Stacy, research and development director of Wunelli, part of the LexisNexis group. The car makers have gone way beyond infotainment, unlocking huge amounts of data in the process … facts and figures which the i