Skip to main content

Toyota developing new map generation system

To aid the safe implementation of automated driving, Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.
December 24, 2015 Read time: 3 mins

To aid the safe implementation of automated driving, 1686 Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.

Toyota's new system uses camera-equipped production vehicles to gather road images and vehicle positional information. This information is sent to data centres, where it is automatically pieced together, corrected and updated to generate high precision road maps that cover a wide area.

An understanding of road layouts and traffic rules (including speed limits and various road signs) is essential for the successful implementation of automated driving technologies. Additionally, high precision measurement of positional information requires the collection of information on dividing lines, curbs, and other road characteristics.

Until now, map data for automated driving purposes has been generated using specially-built vehicles equipped with three-dimensional laser scanners. The vehicles are driven through urban areas and on highways and data are collected and manually edited to incorporate information such as dividing lines and road signs. Due to the infrequent nature of data collection, maps generated in this manner are seldom updated, limiting their usefulness. Additionally, this represents a relatively cost-intensive method of gathering data, due to the need to manually input specific types of data.

Toyota's newly developed system uses automated cloud-based spatial information generation technology, developed by Toyota Central R&D Labs, to generate high precision road image data from the databanks and GPS devices of designated user vehicles. While a system relying on cameras and GPS in this manner has a higher probability of error than a system using three-dimensional laser scanners, positional errors can be mitigated using image matching technologies that integrate and correct road image data collected from multiple vehicles, as well as high precision trajectory estimation technologies. This restricts the system's margin error to a maximum of 5 cm on straight roads. By utilising production vehicles and existing infrastructure to collect information, this data can be updated in real time. Furthermore, the system can be implemented and scaled up at a relatively low cost.

To support the spread of automated driving technologies, Toyota plans to include this system as a core element in automated driving vehicles that will be made available in production vehicles by around 2020. While initial use of the system is expected to be limited to expressways, future development goals include expanding functionality to cover ordinary roads and assist in hazard avoidance. Toyota will also seek to collaborate with mapmakers, with the goal of encouraging the use of high precision map data in services offered by both the public and private sectors.

Related Content

  • December 18, 2024
    Huawei opens door to new opportunities in transport & logistics
    By addressing the four key elements of a transportation network’s composition with a state-of-the-art digital solution, Huawei is bringing significant performance uplifts to all aspects of railway operations
  • October 29, 2014
    ITS need not reinvent machine vision
    Machine vision techniques hold the potential to solve a multitude of challenges facing the transportation sector Optical Character Recognition (OCR), the base technology for number plate recognition, has been in industrial use for more than three decades. It is a prime example of how, instead of having to start from scratch, the transportation sector can leverage and adapt the machine vision expertise already used in industry in order to provide robust solutions with new capabilities. “The real val
  • January 5, 2023
    CES 2023: Beep, beep! It's ZF's AV
    Driverless shuttle deployed in US to create 'single-source autonomous mobility solution'
  • December 3, 2018
    Polarisation is glaringly obvious, says Sony
    Glare from the sun is a factor in a large number of road accidents – many of them fatal. But there is a solution at hand: using polarisation can mitigate the effect of glare and improve ITS camera enforcement, explains Stephane Clauss The effect of glare on driver safety has been well documented. A 2013 UK study by the country’s largest driver organisation, the AA, calculated sun glare was a contributing cause in almost 3,000 road accidents in 2012 alone. This represented one in 33 accidents on Britain’s