Skip to main content

Toyota developing new map generation system

To aid the safe implementation of automated driving, Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.
December 24, 2015 Read time: 3 mins

To aid the safe implementation of automated driving, 1686 Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.

Toyota's new system uses camera-equipped production vehicles to gather road images and vehicle positional information. This information is sent to data centres, where it is automatically pieced together, corrected and updated to generate high precision road maps that cover a wide area.

An understanding of road layouts and traffic rules (including speed limits and various road signs) is essential for the successful implementation of automated driving technologies. Additionally, high precision measurement of positional information requires the collection of information on dividing lines, curbs, and other road characteristics.

Until now, map data for automated driving purposes has been generated using specially-built vehicles equipped with three-dimensional laser scanners. The vehicles are driven through urban areas and on highways and data are collected and manually edited to incorporate information such as dividing lines and road signs. Due to the infrequent nature of data collection, maps generated in this manner are seldom updated, limiting their usefulness. Additionally, this represents a relatively cost-intensive method of gathering data, due to the need to manually input specific types of data.

Toyota's newly developed system uses automated cloud-based spatial information generation technology, developed by Toyota Central R&D Labs, to generate high precision road image data from the databanks and GPS devices of designated user vehicles. While a system relying on cameras and GPS in this manner has a higher probability of error than a system using three-dimensional laser scanners, positional errors can be mitigated using image matching technologies that integrate and correct road image data collected from multiple vehicles, as well as high precision trajectory estimation technologies. This restricts the system's margin error to a maximum of 5 cm on straight roads. By utilising production vehicles and existing infrastructure to collect information, this data can be updated in real time. Furthermore, the system can be implemented and scaled up at a relatively low cost.

To support the spread of automated driving technologies, Toyota plans to include this system as a core element in automated driving vehicles that will be made available in production vehicles by around 2020. While initial use of the system is expected to be limited to expressways, future development goals include expanding functionality to cover ordinary roads and assist in hazard avoidance. Toyota will also seek to collaborate with mapmakers, with the goal of encouraging the use of high precision map data in services offered by both the public and private sectors.

For more information on companies in this article

Related Content

  • Vaisala's RoadAI can optimise maintenance
    August 20, 2019
    Alerts for natural disasters are ones that most of us would rather do without, writes Adam Hill. But the ITS industry still needs help to deal with more common meteorological issues Google Maps has added SOS alerts to its service. For those of us more used to using the phone app to navigate from a metro station to an unfamiliar restaurant, this may seem extreme. But this is not what Google has in mind. Its SOS messages are for “hurricane forecast cones, earthquake shake-maps and flood forecasts”. That
  • Hyundai and Aurora partner to develop Level 4 AVs by 2021
    January 5, 2018
    Aurora’s self-driving technology will be incorporated into Hyundai Motor’s (Hyundai) vehicles in an agreement to bring Level 4 autonomy to market by 2021. The partnership aims to deploy autonomous driving quickly, broadly and safely with Hyundai’s new generation fuel-cell vehicle to be the first test model this year. In the long term, both companies will work to commercialize these vehicles worldwide. The project will initially focus on the ongoing development of hardware and software for automated and
  • Winsted: ‘Minimise distraction – maximise focus’
    June 13, 2022
    Traffic management is a physically and mentally demanding job – so select transportation control room furniture that provides bumper-to-bumper productivity, says Randy Smith of Winsted
  • New solution offers weather and traffic information for ground transportation
    May 17, 2017
    The Weather Company, an IBM business, has introduced its new Operations Dashboard for Ground Transportation, a solution which is designed to help optimise workforce productivity and route selection for freight and logistics companies. This comprehensive, customisable dashboard includes key information on weather and road condition information and also integrates real-time traffic flow and incident data, and flags safety hazards. The Operations Dashboard for Ground Transportation is designed to provide input