Skip to main content

Toyota developing new map generation system

To aid the safe implementation of automated driving, Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.
December 24, 2015 Read time: 3 mins

To aid the safe implementation of automated driving, 1686 Toyota is developing a high-precision map generation system that will use data from on-board cameras and GPS devices installed in production vehicles. The new system will go on display at CES (Consumer Electronics Show) 2016 in Las Vegas from 6-9 January.

Toyota's new system uses camera-equipped production vehicles to gather road images and vehicle positional information. This information is sent to data centres, where it is automatically pieced together, corrected and updated to generate high precision road maps that cover a wide area.

An understanding of road layouts and traffic rules (including speed limits and various road signs) is essential for the successful implementation of automated driving technologies. Additionally, high precision measurement of positional information requires the collection of information on dividing lines, curbs, and other road characteristics.

Until now, map data for automated driving purposes has been generated using specially-built vehicles equipped with three-dimensional laser scanners. The vehicles are driven through urban areas and on highways and data are collected and manually edited to incorporate information such as dividing lines and road signs. Due to the infrequent nature of data collection, maps generated in this manner are seldom updated, limiting their usefulness. Additionally, this represents a relatively cost-intensive method of gathering data, due to the need to manually input specific types of data.

Toyota's newly developed system uses automated cloud-based spatial information generation technology, developed by Toyota Central R&D Labs, to generate high precision road image data from the databanks and GPS devices of designated user vehicles. While a system relying on cameras and GPS in this manner has a higher probability of error than a system using three-dimensional laser scanners, positional errors can be mitigated using image matching technologies that integrate and correct road image data collected from multiple vehicles, as well as high precision trajectory estimation technologies. This restricts the system's margin error to a maximum of 5 cm on straight roads. By utilising production vehicles and existing infrastructure to collect information, this data can be updated in real time. Furthermore, the system can be implemented and scaled up at a relatively low cost.

To support the spread of automated driving technologies, Toyota plans to include this system as a core element in automated driving vehicles that will be made available in production vehicles by around 2020. While initial use of the system is expected to be limited to expressways, future development goals include expanding functionality to cover ordinary roads and assist in hazard avoidance. Toyota will also seek to collaborate with mapmakers, with the goal of encouraging the use of high precision map data in services offered by both the public and private sectors.

Related Content

  • January 30, 2012
    Road design as a primary aid to speed enforcement?
    Letty Aarts, senior researcher, SWOV institute for road safety research, the Netherlands, discusses how road design can act as a primary aid to speed enforcement
  • January 30, 2012
    Selecting the right camera for safety or security
    Machine vision systems offer great variety of function and performance. Teledyne DALSA product manager Manuel Romero describes 10 key criteria to aid selection of advanced camera technology for safety or security applications. There are many ways in which machine vision systems can enhance safety and security in transportation, but the ultimate results will only be as good as the image produced. Success relies on correct selection of the camera of such systems, as the features and performance required vary
  • March 5, 2019
    Toyota to build HD maps for automated vehicles using camera data
    Toyota Research Institute-Advanced Development and telematics company Carmera are conducting a ‘proof of concept’ project to develop camera-based automation of high definition (HD) maps for roads in Japan. Toyota says the project will help realise its automated mapping platform, an open software concept which supports automated driving by combining data gathered from vehicles of participating companies to generate HD maps. Cameras which use Toyota Safety Sense (TSS) components will be equipped to th
  • February 23, 2017
    LiDAR sets its sights on future problems
    AAdvances in LiDAR are helping transport authorities improve services and identify potential problem areas, as geospatial technology expert Dr Neil Slatcher explains. The effects of climate change on the transport infrastructure have long been a cause of concern within the transportation sector - and not only on the structures themselves but also on the surrounding areas. This year, those concerns have become reality with landslides, structural collapses and surfacing issues impacting services across the wo